The MILC Code

version —4.0—

Claude Bernard (Washington U.) <cb@ump.wustl.edu>
Tom Blum (Brookhaven Nat’l Lab) <tblum@wind.phy.bnl.gov>
Tom DeGrand (U. of Colorado) <degrand@aurinko.colorado.edu>
Carleton DeTar (U. of Utah) <detar@mail.physics.utah.edu>
Steve Gottlieb (Indiana U.) <sg@denali.physics.indiana.edu>
Urs Heller (SCRI) <heller@scri.fsu.edu,>
James Hetrick (U. of Arizona) <hetrick@physics.arizona.edu>
Craig McNeile (U. of Utah) <mcneile@mail.physics.utah.edu>
Kari Rummukainen (Indiana U.) <kari@trek.physics.indiana.edu>
Bob Sugar (U.C. Santa Barbara) <sugar@sarek.physics.ucsb.edu>
Doug Toussaint (U. of Arizona) <doug@klingon.physics.arizona.edu>
Matt Wingate (U. of Colorado) <wingate@haggis.colorado.edu>

The MILC Code is a body of high performance research software for doing SU(3) and SU(2) lattice
gauge theory on several different (MIMD) parallel computers in current use. In scalar mode, it
runs on a variety of workstations making it extremely versatile for both production and exploratory

applications. Currently supported code runs on:

e Most scalar machines ("vanilla" version)
e Intel Paragon

e Thinking Machines CM5

e Cray T3D and T3E

e PVM (version 3.2)

e MPI

This is a TEXinfo document; an HTML version is accessible at:

http://www.physics.arizona.edu/~hetrick /milc.html
http://physics.indiana.edu/~sg/milc.html

The MILC Code (version: 4.0)

Copyright (© 1996, by The MILC Collaboration

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Last change: [hetrick:19960725.1630CET]]

Chapter 1: Obtaining the MILC Code 1

1 Obtaining the MILC Code

The most up-to-date information and access to the MILC Code can be found

e via WWW at:
http://physics.indiana.edu/"sg/milc.html
http://www.physics.arizona.edu/ hetrick/milc

e via email request to the authors at:

doug@klingon.physics.arizona.edu

1.1 Usage conditions

The MILC Code is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation.

Publications of research work done using this code or derivatives of this code should acknowledge
its use. The MILC project is supported in part by grants for the US Department of Energy and
National Science Foundation and we ask that you use (at least) the following string in publications

which derive results using this material:

This work was in part based on the MILC collaboration’s public lattice gauge theory code. See
http://physics.indiana.edu/~sg/milc.html

This software is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details, a copy of which License can be obtained from

Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under the

terms of a permission notice identical to this one.

2 The MILC Code (version: 4.0)

2 General description

The MILC Code is a set of codes developed by the MIMD Lattice Computation (MILC) col-
laboration for doing simulations of four dimensional SU(3) lattice gauge theory on MIMD parallel
machines. The latest version of this code includes libraries and routines for SU(2) gauge theory as
well, but is not yet fully supported. Note that the MILC Code is publicly available for research
purposes. Publications of work done using this code or derivatives of this code should acknowledge
this use. Section 1.1 [Usage conditions], page 1

MORE...

2.1 Portability

One of our aims in writing this code was to make it very portable across machine architectures
and configurations. While the code must be compiled with the architecture specific low level
communication files (see Section 5.2 [Building the MILC Code], page 34), the application codes
contain a minimum of #ifdef’s which mostly are for machine dependent performance optimizations
in the conjugate gradient routines, etc.

Similarly, with regard to random numbers, care has been taken to ensure convenience and
reproducablility. With SITERAND set (see Section 4.10 [Random numbers], page 28), the random
number generator will produce the same sequence for a given seed, across architectures and varying
the number of nodes.

2.2 Supported architectures
This manual covers version 4.0 which is currently supposed to run on:

e Most scalar machines (the "vanilla" version for workstations)
e The Intel Paragon

e Thinking Machines” CM5

e The Cray T3D and T3E

e PVM (version 3.2)

e MPI

Chapter 2: General description 3

In addition it has run in the past, and may still work, on

e The Intel iPSC-860
e The Ncube 2

If you have a machine which is not listed above, or would like specific information about a
particular workstation, write to doug@klingon.physics.arizona.edu. It is quite possible that
code for your machine is in developement, or that certain routines for your workstation have been
optimized.

Since this is our working code, it is continually in a state of development. We informally support
the code as best we can by answering questions and fixing bugs. We will be very grateful for reports
of problems and suggestions for improvements, which may be sent to

doug@klingon.physics.arizona.edu

2.3 Directory layout

Each application, or major project of a research program, will have its own directory. Applica-
tions are things like ks_dynamical (simulations with dynamical Kogut-susskind quarks), wilson_invert|j
(Wilson Dirac operator inversion and spectroscopy), etc. All applications share the libsu3 and libsu2
directories containing low-level stuff, and the generic_su3 and generic_su2 directory containing high
level stuff that is more or less independent of the physics. Examples of generic_sulN code are the
random number routines, the layout routines, routines to evaluate the plaquette or Polyakov loop,
etc. The su3 or su2 codes are independent so that one can run SU(3) simulations without building
the libsu2 and generic_su2 directories. At the moment both libsu3 and libsu2 contain a copy of the
files for the library ‘complex.a’ which really only needs to be compiled in one of the directories, so

long as the include path to it is correctly specified in ‘Makefiles’.

The MILC Code should unpack into at least the following directories. (see Section 5.2 [Building
the MILC Code], page 34)

SUPPORT ROUTINES

libsulN: Low level routines and include files (N=2,3).
e complex.h

Header file of definitions and macros for complex numbers.

generic_sulN

The MILC Code (version: 4.0)

e complex.a

Library of routines for complex numbers.
e suN.h

Header file of definitions and macros for SU(N) matrix and fermion operations.
e suN.a

Library of routines for SU(N) operations.

High level code for generic SU(3) simulation. The other directories, which are for real
applications, should use the routines in this directory where possible, otherwise copy

routines from this directory and modify them or write new routines.

APPLICATIONS

ks_dynamical:

Simulations with dynamical Kogut-Susskind fermions. Variants include the "R, "phi"
and hybrid Monte Carlo updating algorithms. Measurements of the plaquette, Polyakov
loop, < 1) > , and fermions energy and pressure are included. Optional measurements
include the hadron spectrum, screening spectrum, and some wave functions (FF'T rou-

tines are included in wave function codes)

wilson_dynamical:

pure_gauge:

Simulations with dynamical Wilson fermions. Variants include the "R", "phi" and
hybrid Monte Carlo updating algorithms. Measurements of the plaquette, Polyakov
loop, < 1) > ,and fermion energy and pressure. Optional measurements include
hadron spectrum, screening spectrum, axial current quark mass, and Landau gauge

quark propagators.

Simulation of the pure gauge theory

wilson_invert:

ks_invert:

Inversion of Wilson fermion matrix (conjugate gradient, MR, and BiCG algorithms)
and measurements with Wilson quarks. Lattices are supposed to be generated by

someone else. Not well maintained.

Inversion of Kogut-Susskind fermion matrix and measurements with Kogut-Susskind
quarks. Lattices are supposed to be generated by someone else. Not well maintained.

heavy_quarks:

Heavy—light quarkonium, Weak matrix element physics. Under development (email:

cb@lump .wustl.edu)

Chapter 2: General description 5

wilson_hybrids:
Spectrum of exotic mesons. (email: doug@klingon.physics.arizona.edu)
perfect_actions

Lattice nirvana. (email: degrand@aurinko.colorado.edu)

Each directory contains a ‘README’ file with specific information on how to make that directory
(see Section 5.2 [Building the MILC Code], page 34).

Generally, to make the code for a particular machine, use the makefile ‘Make_MACHINE’. The
biggest machine dependency is that each machine uses the file ‘com_MACHINE.c’ in the generic_sulN
directory. Hopefully, all of the communication calls specific to your machine are in this file.
‘MACHINE’ is something like paragon, cmb, vanilla, etc.

6 The MILC Code (version: 4.0)

3 Overview of applications

NON-EXISTENT.

3.1 Setup and initialization

Chapter 4: Programming with MILC Code 7

4 Programming with MILC Code

These notes document some of the features of the MILC QCD code. They are intended to help
people understand the basic philosophy and structure of the code, and to outline how one would

modify existing applications for a new project.

4.1 Header files
Various header files define structures, macros, and global variables. They are, at the moment:

‘complex.h’

code for complex numbers (see Section 4.8.4 [Library routines], page 26).

‘su3.h’ routines for SU(3) operations, eg. matrix multiply (see Section 4.8.4 [Library routines],
page 26).

‘su2.h’ routines for SU(2) operations, eg. matrix multiply (see Section 4.8.4 [Library routines],
page 26).

‘globaldefs.h’

in SU(2) code, things that are really common to SU(2) and SU(3)
‘comdefs.h’

macros and defines for communication routines
‘lattice.h’

defines lattice fields and global variables

This last file is rather special being where the physical structure of the lattice is defined. While
other header files are generally stored in the libsuN directories and not changed, a ‘lattice.h’ file
is stored in the application directory (see Section 2.3 [Directory layout], page 3), since it is modified

to contain the fields specific to a particular application.

Some of these include files depend on previous ones, so the order of inclusion matters. Fach

header file should have a wrapper

#ifndef _HEADERFILE_H

#define _HEADERFILE_H
...body

#endif

around the body of the file so that one just inserts the following #include lines:

8 The MILC Code (version: 4.0)

#include <stdio.h>
#include <math.h>
#include "complex.h"
#include "su3.h"
#include "lattice.h"
#include "comdefs.h"

in every file. The wrapper above short circuits re-reading a header which is already known to
the compiler.

The external variables are defined using a macro EXTERN which is usually just "extern", but
when CONTROL is defined, is null. The effect is to reserve storage in whichever file CONTROL is
defined, so that exactly one file, typically the main() program, should contain a #define CONTROL
before all the other includes (C++ would fix this nonsense).

4.2 Global variables

There are a number of global variables available. Most of these are defined in ‘lattice.h’.

Unless specified, these variables are initialized in the function initial_set().

int this_node
number of this node
int number_of_nodes
number of nodes in use
int sites_on_node
number of sites on this node. [This variable is set in: setup_layout()]
int even_sites_on_node
number of evensites on this node. [This variable is set in: setup_layout()]
int odd_sites_on_node
number of odd sites on this node. [This variable is set in: setup_layout ()]
int nx,ny,nz,nt
lattice dimensions
int volume
volume = nx * ny * nz * nt

int iseed random number seed

Chapter 4: Programming with MILC Code 9

There are other variables which are not fundamental to the layout of the lattice but vary from

application to application. These dynamical variables are part of a params struct which is passed

between nodes by initial_set() in ‘setup.c’ (see Section 3.1 [Setup and initialization], page 6).

For example, a pure gauge simulation might have a params struct like this:

/* structure for passing simulation parameters to each node */

typedef struct {
int nx,ny,nz,nt;

int iseed; /%
int warms; /%
int trajecs; /*
int steps; /*
int stepsQ; /%

int propinterval;

int startflag; /*
int fixflag; /*
int saveflag; /%
float beta; /%
float epsilon; /*
char startfile[80]

} params;

/* lattice dimensions */

for random numbers */

the number of warmup trajectories */
the number of real trajectories */
number of steps for updating */
number of steps for quasi-heatbath */
/* number of trajectories between measurements */
what to do for beginning lattice */
whether to gauge fix */

what to do with lattice at end */
gauge coupling */

time step */

,savefile[80];

These run-time variables are usually loaded by a loop over readin() defined in ‘setup.c’.

4.3 Lattice storage

The fields on the lattice are in structures of type site. This structure is defined in ‘lattice.h’

(see Section 4.1 [Header files], page 7). Each node of the parallel machine has an array of such

structures called lattice, with as many elements as there are sites on the node. In scalar mode

there is only one node. The site structure looks like this:

struct site {

/* The first part is standard to all programs */
/* coordinates of this site */

short x,y,z,t;

/* is it even or odd? */

char parity;
/* my index in the
int index;

lattice array */

/* Now come the physical fields, application dependent. We will
add or delete whatever we need. This is just an example. */

/* gauge field */

su3_matrix xlink, ylink, zlink, tlink;

10 The MILC Code (version: 4.0)

/* antihermitian momentum matrices in each direction */
anti_hermitmat xmom, ymom, zmom, tmom;

su3_vector phi; /* Gaussian random source vector */
s
typedef struct site site;

Thus, to refer to the phi field on a particular lattice site, site "i" on this node, you say

lattice[i] .phi,

and for the real part of color 0

lattice[i] .phi.c[0] .real,

etc. See (see Section 4.9 [Distributing sites among nodes], page 26) for how to figure out the

index i. (Actually you usually won’t need it.)

In general, there is a pointer to a site around, and then you would refer to the field as:

site *s;
/* s gets set to &(latticel[i]) */
s->phi

The coordinate, parity and index fields are used by the gather routines and other utility routines,
so it is probably a bad idea to mess with them unless you want to change a lot of things. Other
things can be added or deleted with abandon.

The routine make_lattice() is called from setup() to allocate the lattice on each node. This
routine currently is in the file ‘setup.c’ (see Section 3.1 [Setup and initialization], page 6).

In addition to the fields in the site structure, there are two sets of vectors whose elements

correspond to lattice sites. These are the eight vectors of integers:

int *neighbor [MAX_GATHERS]

neighbor [XDOWN] [i] is the index of the site in the XDOWN direction (see Section 4.4 [Moving
around the lattice], page 11) from the i’th site on the node, if that site is on the same node. If

Chapter 4: Programming with MILC Code 11

the neighboring site is on another node, this pointer will be NOT_HERE (= -1). These vectors are

mostly used by the gather routines, so application code usually doesn’t have to worry about them.

There are a number of important vectors of pointers used for accessing fields at other (usually

neighboring) neighboring sites,
char **gen_pt[MAX_GATHERS]

These vectors of pointers are declared in ‘lattice.h’ and allocated in make_lattice(). They
are filled by the gather routines, start_gather() and start_general_gather(), with pointers to
the gathered field. See Section 4.5 [Accessing fields at other sites], page 14. You use one of these

pointer vectors for each simultaneous gather you have going.
Comments:

e This storage scheme seems to allow the easiest coding, and likely the fastest performance. It
certainly makes gathers about as easy as possible. However, it is somewhat wasteful of memory,
since all fields are statically allocated. (You can use unions if two fields are needed in mutually
exclusive parts of the program.) Also, there is no mechanism for defining a field on only even

or odd sites.

o The "site major" ordering of variables in memory probably means that variables will fairly
often be in cache. The contrasting "field major" ordering (su3_matrix, xlink[volume],

ylink[volume]...) is more suitable for vectorizing in the traditional sense.

e The EVENFIRST option causes all the even sites to be stored first in the array, followed by
all the odd sites. This makes looping over sites of a given parity more efficient. At some point,
this will quit being an option and become a requirement for all layout schemes. At the moment
it is useful for debugging to be able to turn this on and off.

4.4 Moving around the lattice

Various definitions, macros and routines exist for dealing with the lattice fields. So far, the only
macros which are really necessary are F_OFFSET(field_offset)and F_PT(field_pointer). The

definitions and macros (to be defined in ‘globaldefs.h’ are:

/* Directions, and a macro to give the opposite direction */

/* These must go from O to 7 because they will be used to index an
array. */

/* Also define NDIRS = number of directions */

12 The MILC Code (version: 4.0)

#define XUP O

#define YUP 1

#define ZUP 2

#define TUP 3

#define TDOWN 4

#define ZDOWN 5

#define YDOWN 6

#define XDOWN 7

#define OPP_DIR(dir) (7-(dir)) /#* Opposite direction */
/* for example, OPP_DIR(XUP) is XDOWN */

/* number of directions */

#define NDIRS 8

The parity of a site is EVEN or ODD, where EVEN means (x+y+z+t)%2=0. Lots of routines
take EVEN, ODD or EVENANDODD as an argument. Specifically:

#tdefine EVEN 0x02
#tdefine 0DD 0x01
#define EVENANDODD 0x03

Often we want to use the name of a field as an argument to a routine, as in dslash(chi,phi).
There is a macro to convert the name of a field into an integer, and another one to convert this
integer back into an address at a given site. A type field_offset, which is secretly an integer, is

defined to help make the programs clearer.

F_OFFSET(fieldname) gives the offset in the site structure of the named field. F_PT(*site,
field_offset) gives the address of the field whose offset is field_offset at the site *site. An
example is certainly in order:

main() {
copyfield(F_OFFSET(phi), F_OFFSET(chi));
/* "phi" and "chi" are names of su3_vector’s in site. */

¥

/* Copy an su3_vector field over the whole lattice */
copyfield(field_offset offl, field_offset off2) {
register int i;
register site *s;
register su3_vector *vl,*v2;

for(i=0;i<nsites_on_node;i++) { /* loop over sites on node */
s = &(latticel[i]); /* pointer to current site */
vl = (su3_vector *)F_PT(s, offl); /* address of first vector */
v2 = (su3_vector *)F_PT(s, off2);
*v2 = *vl; /* copy the vector at this site */

Chapter 4: Programming with MILC Code 13

Comments:

o [t will generally be good form to typecast the result of the F_.PT macro to the appropriate
pointer type. It naturally produces a character pointer. The code for copyfield could be much

shorter at the expense of clarity. Here we use a macro to be defined below.

copyfield(field_offset offl, field_offset off2) {
register int i;
register site *s;
FORALLSITES(i,s) {
*(su3_vector *)F_PT(s,offl1) = x(su3_vector *)F_PT(s,off2);
+
+

e The following macros are not necessary, but are very useful. You may use them or ignore them
as you see fit. Loops over sites are so common that we have defined macros for them (These
are soon to be in ‘globaldefs.h’). These macros use an integer and a site pointer, which are
available inside the loop. The site pointer is especially useful for accessing fields at the site.

/* macros to loop over sites of a given parity, or all sites on a node.
Usage:
int i;
site *s;
FOREVENSITES(i,s) {
Commands go here, where s is a pointer to the current
site and i is the index of the site on the node.
For example, the phi vector at this site is "s->phi".
} o/
#define FOREVENSITES(i,s) \
for(i=0,s=lattice;i<nsites_on_node;i++,s++)if (s->parity==EVEN)
#define FORODDSITES(i,s) \
for(i=0,s=lattice;i<nsites_on_node;i++,s++)if (s->parity==0DD)
#define FORALLSITES(i,s) \
for(i=0,s=lattice;i<nsites_on_node;i++,s++)
#define FORSOMEPARITY(i,s,parity) \
for(i=0,s=lattice;i<nsites_on_node;i++,s++) \
if (s->parity & (parity) !'= 0)

The first three of these macros loop over even, odd or all sites on the node, setting a pointer
to the site and the index in the array. The index and pointer are available for use by the
commands inside the braces. The last macro takes an additional argument which should be
one of EVEN, ODD or EVENANDODD, and loops over sites of the selected parity. The actual
definitions are not quite those written above if the EVENFIRST option is turned on, but they
are logically equivalent.

14 The MILC Code (version: 4.0)

4.5 Accessing fields at other sites

At present, each node only writes fields on its own sites. To read fields at other sites, there are
gather routines. These are portable in the sense that they will look the same on all the machines
on which this code runs, although what is inside them is quite different. All of these routines
return pointers to fields. If the fields are on the same node, these are just pointers into the lattice,
and if the fields are on sites on another node some message passing takes place. Because the
communcation routines may have to allocate buffers for data, it is necessary to free the buffers by
calling the appropriate cleanup routine when you are finished with the data. These routines are in
‘com_XXXXX.c’, where XXXXX identifies the machine.

The gather routines provide a hopefully optimized way to gather a field from the neighboring
sites. There is another type defined, msg_tag, which remembers the information needed from
one gather routine to the next. The destination of the gather is one of the vectors of pointers,
gen_pt[0], etc. (see Section 4.3 [Lattice storage|, page 9). On each site, or on each site of the
selected parity, this pointer will be set to the address of the desired field on the neighboring site,
or a copy thereof if the site lives on a different node.

These routines use asynchronous sends and receives when possible, so it is possible to start one
or more gathers going, and do something else while awaiting the data. If you are doing more than
one gather at a time, just use different *msg_tags for each one to keep them straight.

To set up the data structures required by the gather routines, make_nn_gathers() is called in
the setup part of the program. This must be done after the call to make_lattice().

/* "start_gather()" starts asynchronous sends and receives required
to gather neighbors. */

msg_tag * start_gather(field,size,direction,parity,dest);
/* arguments */
field_offset field; /* which field? Some member of structure "site'" */

int size; /* size in bytes of the field
(eg. sizeof(su3_vector))*/

int direction; /* direction to gather from. eg XUP x/

int parity; /* parity of sites whose neighbors we gather.
one of EVEN, 0DD or EVENANDODD. */

char * dest; /* one of the vectors of pointers */

/* "wait_gather()" waits for receives to finish, insuring that the
data has actually arrived. The argument is the (msg_tag *) returned
by start_gather. */

Chapter 4: Programming with MILC Code 15

void wait_gather(msg_tag *mbuf) ;

/* "cleanup_gather()" frees all the buffers that were allocated, WHICH
MEANS THAT THE GATHERED DATA MAY SOON DISAPPEAR. */

void cleanup_gather(msg_tag *mbuf);

Nearest neighbor gathers are done as follows. In the first example gathers phi at all even sites
from the neighbors in the XUP direction. (Gathering at EVEN sites means that phi at odd sites
will be made available for computations "at EVEN sites.)

msg_tag *tag;
site *s;
int i;

tag = start_gather(F_OFFSET(phi), sizeof(su3_vector), XUP,
EVEN, gen_pt[0]);

/* do other stuff */

wait_gather(tag) ;

/* x(su3_vector *)gen_pt[0][i] now contains the address of the
phi vector (or a copy therof) on the neighbor of site i in the
XUP direction for all even sites i. (The type cast
"(su3_vector *)" is usually not necessary.) */

FOREVENSITES(i,s) {

/* do whatever you want with it here.
(su3_vector *)(gen_pt[0][i]) is a pointer to phi on
the neighbor site. */

¥

cleanup_gather(tag);
/* subsequent calls will overwrite the gathered fields. but if you
don’t clean up, you will eventually run out of space */

This second example gathers phi from two directions at once

msg_tag *tag0O,*tagl;

tagld = start_gather(F_OFFSET(phi), sizeof(su3_vector), XUP,
EVENANDODD, gen_pt[0]);

tagl = start_gather(F_OFFSET(phi), sizeof(su3_vector), YUP,
EVENANDODD, gen_pt[1]);

/** do other stuff *x/

16 The MILC Code (version: 4.0)

wait_gather(tagl);
/* you may now use *(su3_vector *)gen_pt[0][i], the
neighbors in the XUP direction. */

wait_gather(tagl);
/* you may now use *(su3_vector *)gen_pt[1][i], the
neighbors in the YUP direction. */

cleanup_gather(tag0) ;
cleanup_gather(tagl) ;

Of course, you can also simultaneously gather different fields, or gather one field to even sites
and another field to odd sites. Just be sure to keep your msg_tag pointers straight. The inter-
nal workings of these routines are far too horrible to discuss here. Consult the source code and

comments in ‘com_XXXXX.c’ if you must.

There is another type of gather for getting a field from an arbitrary displacement. It works
like the gather described above except that instead of specifying the direction you specify a four
component array of integers which is the relative displacement of the field to be fetched. This
mechanism is much slower than gathering from neighbors, but far faster than field_pointers()
(see Comments below). Thus if you plan to do a particular gather frequently, use make_gather ()
to define it.

Also, there can only be one general_gather at a time working. Thus if you need to do two
general_gathers you must wait for the first gather before starting the second. (It is not necessary

to cleanup the first gather before starting the second.)

Chaos will ensue if you use wait_gather () with a message tag returned by start_general_gather() i

or vice-versa. start_general_gather() has the following format:

/* "start_general_gather()" starts asynchronous sends and receives
required to gather neighbors. */
msg_tag * start_general_gather(field,size,displacement,parity,dest)
/* arguments */
field_offset field; /% which field? Some member of structure site */
int size; /* size in bytes of the field
(eg. sizeof(sul3_vector))*/
int *displacement; /* displacement to gather from,
a four component array */
int parity; /* parity of sites whose neighbors we gather.
one of EVEN, ODD or EVENANDODD. */
char ** dest; /* one of the vectors of pointers */

Chapter 4: Programming with MILC Code 17

/* "wait_general_gather()" waits for receives to finish, insuring that
the data has actually arrived. The argument is the (msg_tag *)
returned by start_general_gather. */

void wait_general_gather(msg_tag *mbuf);

/* "cleanup_general_gather()" frees all the buffers that were
allocated, WHICH MEANS THAT THE GATHERED DATA MAY SOON
DISAPPEAR. */

void cleanup_general_gather(msg_tag *mbuf);

This example gathers phi from a site displaced by +1 in the x direction and -1 in the y direction.

msg_tag *tag;
site *s;
int i, disp[4];

disp[XUP] = +1; disp[YUP] = -1; disp[ZUP] = disp[TUP] = O;

tag = start_general_gather(F_OFFSET(phi), sizeof(su3_vector), disp,
EVEN, gen_pt[0]); /* do other stuff x/

wait_general_gather(tag) ;

/* gen_pt[0][i] now contains the address of the phi
vector (or a copy therof) on the site displaced from site i
by the vector 'disp" for all even sites i. */

FOREVENSITES(i,s) {

/* do whatever you want with it here.
(su3_vector *)(gen_pt[0][i]) is a pointer to phi on
the other site. */

+

cleanup_general_gather(tag);

Comments:

o The code was originally designed with functions to provide a general way of accessing fields
at any site. However, they require the ability for one node to interupt another. So far as we
know, this works reliably on the iPSC-860, unreliably on the Intel Paragon, and not at all
on most other parallel machines. So we actually don’t use the following routines. However,
for historical purposes, and in anticipation of better hardware in the future, we include the

following notes on arbitrary data access across the nodes.

To set up the interrupt handlers required by the field_pointer routines, call start_handlers (O}

in the setup part of the program.

/* "field_pointer_at_coordinates()" returns a pointer to a field in
the lattice given its coordinates. */

18

The MILC Code (version: 4.0)

char * field_pointer_at_coordinates(field, size, x,y,z,t);

/* arguments */

field_offset field; /% offset of one of the fields in lattice[] */
/* size of the field in bytes */
/* coordinates of point to get field from */

int size;
int x,y,z,t;

/* "field_pointer_at_direction()" returns a pointer to a field in the
lattice at a direction from a given site. */ char *
field_pointer_at_direction(field,size, s, direction);

/* arguments */
int field;

int size;

site *s;

int direction;

/*
/*
/*
/*

offset of one of the fields in lattice[] */

size of the field in bytes */

pointer to a site on this node */

direction of site’s neighbor to get data from. */

/* “"cleanup_field_pointer()" frees the buffers that field_pointer...

allocated. */

void cleanup_field_pointer(char *buf);

An example of the usage of these routines is:

su3_matrix *pt; int x,y,z,t;
/* set x,y,z,t to the coordinates of the desited site here, then: */

pt = (su3_matrix *)field_pointer_at_coordinates(F_OFFSET(x1link),

sizeof (su3_matrix),
X,¥,2,t);

/* now "pt" points to the xlink at the site whose coordinates are
X,y,Z,t. It may point either to the original data or a copy.
Use it for whatever you want, and when you are done with it: */

cleanup_field_pointer((char *)pt);

/* subsequent calls to malloc may overwrite *pt, so don’t use it any

more */

4.6 Detalils of gathers and creating new ones

A gather is basically defined by a mapping, where each site receives data from some other site.

To speed up gathers, there are routines which prepare tables on each node containing information

about what sites must be sent to other nodes or received from other nodes. Before calling such a

gather, a routine must be called to set up the tables. The call to this routine is:

#include <comdefs.h>

Chapter 4: Programming with MILC Code 19

int make_gather(function, arg_pointer, inverse, want_even_odd,
parity_conserve)
int (x*function)();
int *arg_pointer;
int inverse;
int parity_conserve;

The "function" argument is a pointer to a function which defines the mapping. This function

must have the following form:

int function(x, y, 2, t, arg_pointer, forw_back, xpt, ypt, zpt, tpt)
int x,y,z,t;
int *arg_pointer;
int forw_back;
int *xpt,*ypt,*zpt,*tpt;

Here x,y,z,t are the coordinates of the site RECEIVING the data. arg_pointer is a pointer
to a list of integers, which is passed through to the function from the call to make_gather (). This
provides a mechanism to use the same function for different gathers. For example, in setting up
nearest neighbor gathers we would want to specify the direction. See the examples below.

forw_back is either FORWARDS or BACKWARDS. If it is FORWARDS, the function should
compute the coordinates of the site that sends data to x,y,z,t. If it is BACKWARDS, the function
should compute the coordinates of the site which gets data from x,y,z,t. It is necessary for the
function to handle BACKWARDS correctly even if you don’t want to set up the inverse gather (see

below). At the moment, only one-to-one (invertible) mappings are supported.

The inverse argument to make_gather() is one of OWNINVERSE, WANT_INVERSE, or
NO_INVERSE. If it is OWN_INVERSE, the mapping is its own inverse. In other words, if site
x1,y1,z1,t1 gets data from x2,y2,22,t2 then site x2,y2,22,t2 gets data from x1,y1,z1,t1.
Examples of mappings which are there own inverse are the butterflys in FFT’s. If inverse is
WANT_INVERSE, then make_gather () will make two sets of lists, one for the gather and one for
the gather using the inverse mapping. If inverse is NO_INVERSE, then only one set of tables is
made.

The want_even_odd argument is one of ALLOW_EVEN_ODD or NO_EVEN_ODD. If it is
ALLOW_EVEN_ODD separate tables are made for even and odd sites, so that start gather can be
called with parity EVEN, ODD or EVENANDODD. If it is NO_LEVEN_ODD, only one set of tables
is made and you can only call gathers with parity EVENANDODD.

20 The MILC Code (version: 4.0)

The parity_conserve argument to make_gather () is one of SAME_PARITY, SWITCH_PARITY]
or SCRAMBLE _PARITY. Use SAME_PARITY if the gather connects even sites to even sites and
odd sites to odd sites. Use SWITCH_PARITY if the gather connects even sites to odd sites and
vice versa. Use SCRAMBLE_PARITY if the gather connects some even sites to even sites and
some even sites to odd sites. If you have specified NO_EVEN_ODD for want_even_odd, then the
parity_conserve argument does nothing. Otherwise, it is used by make_gather() to help avoid

making redundant lists.

make_gather() returns an integer, which can then be used as the direction argument to
start_gather(). If an inverse gather is also requested, its direction will be one more than the
value returned by make_gather(). In other words, if make_gather() returns 10, then to gather
using the inverse mapping you would use 11 as the direction argument in start_gather.

Notice that the nearest neighbor gathers do not have their inverse directions numbered this
convention. Instead, they are sorted so that OPP_DIR(direction) gives the gather using the

inverse mapping.

Now for some examples which hopefully clarify all this.

First, suppose we wished to set up nearest neighbor gathers. (Of course, make_comlinks()
already does this for you, but it is a good example. The function which defines the mapping is
basically neighbor_coords (), with a wrapper which fixes up the arguments. arg should be set to
the address of the direction — XUP, etc.

/* The function which defines the mapping */
neighbor_temp(x,y,z,t, arg, forw_back, xpt, ypt, zpt, tpt)
int x,y,z,t;
int *arg;
int forw_back;
int *xpt,*ypt,*zpt,*tpt;

register int dir; /* local variable */

dir = *arg;

if (forw_back==BACKWARDS)dir=0PP_DIR(dir);

neighbor_coords(x,y,z,t,dir,xpt,ypt,zpt,tpt);
}

/* Code fragment to set up the gathers x/

/* Do this once, in the setup part of the program. */
int xup_dir, xdown_dir;

int temp;

temp = XUP; /* we need the address of XUP %/

Chapter 4: Programming with MILC Code 21

xup_dir = make_gather(neighbor_temp, &temp, WANT_INVERSE,
ALLOW_EVEN_ODD, SWITCH_PARITY);
xdown_dir = xup_dir+1;

/* Now you can start gathers */

start_gather(F_OFFSET(phi), sizeof(su3_vector), xup_dir, EVEN,
gen_pt[0]);

/* and use wait_gather, cleanup_gather as always. */

Again, once it is set up it works just as before. Essentially, you are just defining new directions.
Again, make_comlinks () does the same thing, except that it arranges the directions so that you
can just use XUP, XDOWN, etc. as the direction argument to start_gather().

A second example is for a gather from a general displacement. You might, for example, set up
a bunch of these to take care of the link gathered from the second mearest neighbor in evaluating
the plaquette in the pure gauge code. In this example, the mapping function needs a list of four
arguments — the displacement in each of four directions. Notice that for this displacement even

sites connect to even sites, etc.

/* The function which defines the mapping */
/* arg is a four element array, with the four displacements */
general_displacement(X,y,z,t, arg, forw_back, xpt, ypt, zpt, tpt)
int x,y,z,t;
int *arg;
int forw_back;
int *xpt,*ypt,*zpt,*tpt;

{
if(forw_back==FORWARDS) { /* add displacement */
*xpt = (x+nx+argl[0])%nx;
*xypt = (y+ny+arg[i])iny;
*xzpt = (z+nz+arg[2])¥nz;
*tpt = (t+nt+argl[3])¥nt;
+
else { /* subtract displacement */
*xpt = (x+nx-argl[0])%nx;
*ypt = (y+ny-argli])%ny;
xzpt = (z+nz-argl[2])¥nz;
*tpt = (t+nt-arg[3])¥nt;
+
+

/* Code fragment to set up the gathers x/

/* Do this once, in the setup part of the program. */

/* In this example, I set up to gather from displacement -1 in
the x direction and +1 in the y direction */

int plus_x_minus_y;

int displ[4];

22 The MILC Code (version: 4.0)

disp[0] = -1;
disp[1] = +1;
disp[2] = 0;
disp[3] = 0;

plus_x_minus_y = make_gather(general_displacement, disp,
NO_INVERSE, ALLOW_EVEN_ODD, SAME_PARITY);

/* Now you can start gathers */

start_gather(F_OFFSET(link[YUP]), sizeof(su3_matrix), plus_x_minus_y,
EVEN, gen_pt[0]);

/* and use wait_gather, cleanup_gather as always. */

Finally, an FFT butterfly we would want to set up roughly as follows. Here the function wants

two arguments: the direction of the butterfly and the level.

/* The function which defines the mapping */
/* arg is a two element array, with the direction and level */
butterfly_map(x,y,z,t, arg, forw_back, xpt, ypt, zpt, tpt)
int x,y,z,t;
int *arg;
int forw_back;
int *xpt,*ypt,*zpt,*tpt;
{
int direction,level;
direction = argl[0];
level = arg[i];
/* Rest of code goes here x/

¥

/* Code fragment to set up the gathers x/
/* Do this once, in the setup part of the program. */
int butterfly_dir([5]; /* for nx=16 */
int args([2];
args [0]=XUP;
for(level=1; level<=4; level++) {
args[1]=level;
butterfly_dir[level] = make_gather(butterfly_map, args,
OWN_INVERSE, NO_EVEN_0DD, SCRAMBLE_PARITY);
+

/* similarly for y,z,t directions */

4.7 Datatypes

Various data structures have been defined for QCD computations. More will be defined as we
progress, notably Wilson fermion spinors. Again, you are free to use these or not, and to define
any other types.

Chapter 4: Programming with MILC Code 23

In names of members of structure, I will use the following conventions:

c means color, and has an index which takes three values (0,1,2).

d means Dirac spin, and its index takes four values (0-4).

e means element of a matrix, and has two indices which take three values - row and
column.

Complex numbers: (in ‘complex.h’)

typedef struct { /* standard complex number declaration for single- */
float real; /* precision complex numbers */
float imag;

} complex;

typedef struct { /* standard complex number declaration for double- */
double real; /* precision complex numbers */

double imag;
} double_complex;

Three component complex vectors, 3x3 complex matrices, and 3x3 antihermitian matrices stored

in triangular (compressed) format. (in ‘su3.h’)

typedef struct { complex e[3][3]; } su3_matrix;
typedef struct { complex c[3]; } su3_vector;
typedef struct {

float mOOim,m11im,m22im;

complex m01,m02,m12;
} anti_hermitmat;

Wilson vectors:
typedef struct { su3_vector d[4]; } wilson_vector;
Projections of Wilson vectors, using 1 £+,

typedef struct { su3_vector h[2]; } half_wilson_vector;

A definition to be used in the next definition:

typedef struct { wilson_vector c[3]; } color_wilson_vector;

24

The MILC Code (version: 4.0)

A four index object — source spin and color by sink spin and color:

typedef struct { color_wilson_vector d[4]; } wilson_matrix

Examples:

su3_vector phi; /#* declares a vector */

su3_matrix ml,m2,m3; /*
wilson_vector wvec; /*
phi.c[0].real = 1.0; /*
phi.c[1] = cmplx(0.0,0.0); /%
ml.e[0][0] = cmplx(0,0); /%

mult_su3_nn(&ml, &m2, &m3); /*

wvec.d[2] .c[0] .imag = 1.0; /%

4.8 Library routines

4.8.1 Complex numbers

declares 3x3 complex matrices */
declares a Wilson quark vector */

sets real part of color O to 1.0 %/
sets color 1 to zero (requires
including "complex.h" */

refers to 0,0 element */

subroutine arguments are usually
addresses of structures */

How to refer to imaginary part of
spin two, color zero. */

‘complex.h’ and ‘complex.a’ contain macros and subroutines for complex numbers. For exam-

ple:

complex

a,b,c;

CMUL(a,b,c); /* macro: c <- axb *x/

Note that all the subroutines (cmul(), etc.) take addresses as arguments, but the macros

generally take the structures themselves. These functions have separate versions for single and

double precision complex numbers. The macros work with either single or double precison (or

mixed). ‘complex.a’ contains:

complex
complex
complex
complex
complex
complex
complex

cmplx(float r, float i)

/* (r,i) */

cadd(complex *a, complex *b); /* a + b */
cmul (complex *a, complex *b); /* a * b */
csub(complex *a, complex *b); /* a - b */
cdiv(complex *a, complex *b); /* a / b */

conjg(complex *a);
cexp(complex *a);

/* conjugate of a */
/* exp(a) */

Chapter 4: Programming with MILC Code

complex clog(complex *a) ;
complex csqrt(complex *a);
complex ce_itheta(float theta);

/* 1n(a) */
/* sqrt(a) */

double_complex dcmplx(double r, double i);
double_complex dcadd(double_complex *a, double_complex *b); /* a + b
double_complex dcmul(double_complex *a, double_complex *b); /* a * b
double_complex dcsub(double_complex *a, double_complex *b); /* a - b
double_complex dcdiv(double_complex *a, double_complex *b); /* a / b
double_complex dconjg(double_complex *a) ;
double_complex dcexp(double_complex *a);
double_complex dclog(double_complex *a);
double_complex dcsqrt(double_complex *a);
double_complex dce_itheta(double theta);

and macros:

CONJG(a,b)
CADD(a,b,c)
CSUM(a,b)
CSUB(a,b,c)
CMUL(a,b,c)
CDIV(a,b,c)
CMUL_J(a,b,c)
CMULJ_(a,b,c)
CMULJJ(a,b,c)
CNEGATE(a,b)
CMUL_I(a,b)
CMUL_MINUS_I(a,b)
CMULREAL(a,b,c)
CDIVREAL(a,b,c)

OO0 ocoTO 00000 O0o

n .+ 0 n

conjg(a)
a+b
= b

a b
a *xb
a b

~

a * conjg(b)
conjg(a) * b
conjg(axb)

= -a

4.8.2 SU(3) operations

ia
-ia
ba with b real and a complex
a/b with a complex and b real

/* exp(ixtheta) */

/* (r,i)

/* conjugate of a
/* exp(a)

/* 1n(a)

/* sqrt(a)

/* exp(ixtheta)

‘sud.h’ and ‘su3.a’ contain functions for SU(3) operations. For example:

void mult_su3_nn(su3_matrix *a, su3_matrix *b, su3_matrix *c);
/* matrix multiply, no adjoints
*Cc <- *a * *b (arguments are pointers) */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

void mult_su3_mat_vec_sum(su3_matrix *a, su3_vector *b, su3_vector *c);

/* su3_matrix times su3_vector multiply and add to another su3_vector

*¥Cc <- *A * *b + *c *x/

25

26 The MILC Code (version: 4.0)

There have come to be a great many of these routines, too many to keep a duplicate list of
here. Consult the include file ‘su3.h’ for a list of prototypes and description of functions. An html
version of ‘su3.h’ is available at http://www.physics.arizona.edu/ hetrick/su3.html.

4.8.3 SU(2) functions

Most of the SU(3) utility routines also exist for SU(2). See the directory libsu2, which contains
the include file ‘su2.h’ and the file ‘globaldefs.h’. ‘globaldefs.h’includes things that are really
common to both SU(2) and SU(3), and in some later code version these routines should be removed

from ‘su3.h’.

4.8.4 Miscellaneous functions

These will probably be collected somewhere as the code evolves.

/* utility function for finding coordinates of neighbor */

/* x,y,z,t are the coordinates of some site, and x2p... are
pointers. *x2p... will be set to the coordinates of the
neighbor site at direction 'dir".

neighbor_coords(x,y,z,t,dir, x2p,y2p,z2p,t2p)
int x,y,z,t,dir; /* coordinates of site, and direction (eg XUP) x/
int *x2p,*y2p,*z2p,*t2p;

4.9 Distributing sites among nodes

Four functions are used to determine the distribution of sites among the parallel nodes. These
functions may be changed, but chaos will ensue if they are not consistent. For example, it is a gross
error for the node_index function to return a value larger than or equal to the value returned by
num_sites of the appropriate node. In fact, node_index must provide a one-to-one mapping of
the coordinates of the sites on one node to the integers from 0 to num_sites(node)-1.

setup_layout () is called once on each node at initialization time, to do any calculation and set
up any static variables that the other functions may need. At the time setup_layout() is called
the global variables ns,ny,nz and nt (the lattice dimensions) will have been set.

setup_layout () must initialize the global variables:

Chapter 4: Programming with MILC Code 27

sites_on_node,
even_sites_on_node,
odd_sites_on_node.

The following functions are available for node/site reference:

num_sites(node)

returns the number of sites on a node
node_number(x,y,z,t)

returns the node number on which a site lives.
node_index(x,y,z,t)

returns the index of the site on the node.

Thus, the site at x,y,z,t is lattice[node_index(x,y,z,t)].

A good choice of site distribution on nodes will minimize the amount of communication. These
routines are in ‘layout_XXX.c’. There are currently several layout strategies to choose from; select
one in your ‘Makefile’ (see Section 5.2 [Building the MILC Code], page 34).

‘layout_gen.c’

"generic" stupid layout, mostly for testing.
‘layout_planes.c’

distributes 2-d planes enely among nodes.
‘layout_squares.c’

divides longest two directions of the lattice by factors of two. Fails if there aren’t
enough powers of two in the dimensions.

‘layout_yztcubes.c’
useful on the CM5
‘layout_hyper.c’

divides the lattice up into hypercubes by dividing dimensions by factors of two. Fails
if there aren’t enough powers of two in the dimensions.

Below is a completely simple example, which just deals out the sites among nodes like cards in
a deck. It works, but you would really want to do much better.

int Num_of_nodes; /* static storage used by these routines */

28 The MILC Code (version: 4.0)

void setup_layout() {
Num_of_nodes = numnodes();
sites_on_node = nx*ny*nz*nt/Num_of_nodes;
even_sites_on_node = odd_sites_on_node = sites_on_node/2;

¥

int node_number(x,y,z,t)
int x,y,z,t;
{
register int i;
i = x+nx*(y+ny*(z+nz*t)) ;
return(i¥Num_of_nodes);

¥

int node_index(x,y,z,t)

int x,y,z,t;

{
register int i;
i = x+nxx(y+ny* (z+nz*t));
return(i/Num_of_nodes);

¥

int num_sites(node)
int node;

{
register int i;
i = nx*ny*nz*nt;
if(node< iYNum_of_nodes) return(i/Num_of_nodes+1);
else return(i/Num_of_nodes);

Some of the layout files have options, set in ‘lattice.h’. The EVENFIRST option causes all
the even sites to be stored first in the array, followed by all the odd sites. This makes looping
over sites of a given parity more efficient. GRAYCODE and ACCORDION are obsolete options
for hypercube architectures.

Note: At some future time, EVENFIRST will become required.

4.10 Random numbers

The random number generator is the exclusive-OR of a 127 bit feedback shift register and a 32
bit integer congruence generator. It is supposed to be machine independent. Each node or site uses
a different multipler in the congruence generator and different initial state in the shift register, so

Chapter 4: Programming with MILC Code 29

all are generating different sequences of numbers. If SITERAND is defined, each lattice site has
its own random number generator state. This takes extra storage, but means that the results of
the program will be independent of the number of nodes or the distribution of the sites among the

nodes.

4.11 Files

The files which make up the program are listed here. This list depends very much on which
application of the program (Kogut-Susskind/Wilson? Thermodynamics/Spectrum?) is being built.
The listing here is for a bare bones Kogut-Susskind application.

‘Make_XXX:’

Contains instructions for compiling and linking. There are three things you can make,
"su3_rmd", "sud_phi" and "su3_hmc", which are programs for the R algorithm, the
phi algorithm, or the hybrid Monte Carlo algorithm. Definitions of COMPILER and
CFLAGS in this file need to be changed to move from machine to machine.

HIGH LEVEL ROUTINES:

‘control.c’

main procedure - directs traffic it must call initialize_machine() first thing.
‘setup.c’ most of the initialization stuff - called from control.c
‘update.c’

update the gauge fields by refreshing the momenta and integrating for one trajectory.

Knows three different algorithms through preprocessor switches.
‘update_h.c’

Update the gauge momenta
‘update_u.c’

Update the gauge fields
‘grsource.c’

Heat bath update of the phi field - "Gaussian random source"
‘d_congrad5.c’

A Kogut-Susskind inverter
‘reunitarize.c’

Reunitarize the gauge fields

30 The MILC Code (version: 4.0)

‘action.c’
Measure the action. Used only in the hybrid Monte Carlo algorithm.
‘ranmom. ¢’
Produce Gaussian random momenta for the gauge fields.
‘plaquette.c’
‘plaquette2.c’
Measure the plaquette. plaquette? is the good one, the first one is obsolete except for
testing field _pointer routines.
‘ploop.c’ Measure Polyakov loop
‘f _measure.c’
Measure fermion stuff - psi-bar-psi, fermion energy and pressure.
‘spectrum.c’
Measure hadron propagators
‘spectrum_s.c’
Measure hadron screening propagators
‘gaugefix.c’

Fix to lattice Landau or Coulomb (in any direction) gauge

LOWER LEVEL STUFF

‘ranstuff.c’

Routines for random numbers on multiple nodes: initialize_prn() and myrand()

‘layout _XXX.c’
currently one of layout_gen.c, layout_planes.c, layout_squares.c or layout_hyper.c. Rou-
tines which tell which node a site lives on, and where on the node it lives.

‘com_XXX.c’
Communication routines - gather, field_pointer, setup routines for communications.
This one is very machine dependent. Choose the appropriate one for your target
machine.

‘io_lat.c,’
Input and output routines - read and write lattices. Some optimized versions for special

machines exist such as ‘io_t3d.c’ amd ‘io_paragon.c’.

LIBRARIES

Chapter 4: Programming with MILC Code 31

‘complex.a’
complex number operations. See section on "Library routines".

‘sul.a’ 3x3 matrix and 3 component vector operations. See "utility subroutines".

4.12 Bugs and features

The 1860 assembler language subroutines use doubleword loads to get complex numbers, and
if they are not aligned on doubleword boundaries the program slows down at best and crashes at
worst. I do not yet know an elegant way to insure this - putting a double in the site structure
ahead of all the complex stufl doesn’t work because the compiler doesn’t align doubles to doubleword
boundaries! The current workaround is to insert integers in the site structure as needed. Currently,
only one such kludge is needed; the random number generator state is 11 words so it is padded to
12 words with an integer to keep things aligned on double words (See ‘ks_dynamical/lattice.h’
for example).

Ideally the code will terminate smoothly at the end of the input file. Some applications like
ks_dynamical loop over blocks of input. On some machines, we have found that the mechanism for
node 0 to kill all other nodes does not work (the T3D using PVM for instance). Therefore most of
our applications contain code in ‘setup.c’ which stops the program if beta < 0.

32 The MILC Code (version: 4.0)

5 Building the MILC Code

At the moment, building the MILC Code is a bit kludgey. There is a ‘makefile’ for each type
of parallel architecture:

Make_vanilla (for scalar mode on workstations and PC’s)
Make_cmb

Make_intel

Make_paragon

Make_t3d

Make_t3d_mpi

Make_mpi

Sometime soon we hope to use the Cygnus’ configure package to dynamically test for architec-
tural type and compiling environment, and to then produce appropriate makefiles. This will mean
one types simply: configure and make.

For now however, the procedure goes as follows, where we make each directory individually. For
the most part the procedure is identical in each of the application directories. Since we will need
the libsu3 (or su2) libraries before any applications or generic code, let’s first go through their
compilation as an example.

5.1 Making the Libraries

There are two libraries needed for SU(3) operations:

e complex.a contains struct definitions and routines for operations on complex numbers. See
‘complex.h’ for a summary.

e sud.a contains struct definitions and routines for operations on SU3 matrices, 3 element complex
vectors, and Wilson vectors (12 element complex vectors). See ‘su3.h’ for a summary.

For SU(2) code you will need to additionally make

e su2.a which contains routines for operations on SU2 matrices, 2 element complex vectors, and
SU(2) Wilson vectors (Note that these are not yet implimented!). See ‘su3.h’ for a summary.

Chapter 5: Building the MILC Code 33

First cd to the libsu3 directory, and choose the makefile for your machine. You will have to

edit this file according to your environment and directory structure by uncommenting the correct
COMPILER, CFLAGS, etc. from the list as shown below for gcc compatible machines.

Makefile for Libraries for QCD programs # # Vanilla version, for
workstations

#CFLAGS = -0 -fsingle -DFAST #Sun 3 #CFLAGS = -04 -fsingle -DFAST #Sun 4
#CFLAGS = -0 -DFAST -DPROTO -float #Dec alpha compiler #CFLAGS = -0 -f
-DFAST -DPROTO #Mips #CFLAGS = -0 -DFAST -DPROTO #IBM RS6000 #CFLAGS =
-03 -qarch=pwr2 -DFAST -DPROTO #IBM POWER2 CFLAGS = -0 -DFAST -DPROTO
#gnu c compiler

#COMPILER = cc #most #COMPILER = xlc #IBM RS6000 ANSI c COMPILER = gcc
#gnu c compiler

At this point you can make the libraries for your particular architecture.

There are a few files which are specific to particular machines. i860 assembler code for some

[4 [4

routines is in the files with the ‘.m4’ suffix. In each case a ‘.c’ file of the same name contains a
C routine which should work identically. Similarly, T3D assembler code is in files with the ‘.t3d’
suffix. The existence of assembler code for the DEC Alpha workstation is a byproduct of producing
T3D assembler—the nodes use the same chip, so we just need to change the assembler directives,

mneumonics, and stack usage conventions.

The scalar workstation code on a SUN4 and the CM5 code can be compiled either with the Sun
cc compiler or with the gnu C compiler gcc. Note that if the library code is compiled with gcc
the application directory code must also be compiled with gcc, and vice versa. This is because gcc
understands prototypes and the sun4 cc compiler doesn’t, and they therefore pass float arguments
differently. We generally recommend gcc on workstations and the CMb5, with the exception of the
DEC Alpha, where cc produces better optimized code. Then, to make the libraries say, on

a scalar workstation (not a DEC Alpha),
for PVM,
or the CMb:

Edit ‘Make_vanilla’ to get the directories, compiler, flags, etc. correct; then do
make -f Make_vanilla all >& make.log &
the DEC Alpha

Edit ‘Make_alpha’ to get the directories, compiler, flags, etc. correct.

34 The MILC Code (version: 4.0)

make -f Make_alpha all >& make.log &

the Intel Paragon
Edit ‘Make_paragon’ to get the directories, compiler, flags, etc. correct.
make -f Make_paragon all >& make.log &

the Cray T3D
Edit ‘Make_t3d’ to get the directories, compiler, flags, etc. correct.
make -f Make_t3d all >& make.log &

The same procedure should be followed in the libsu2 directory to make ‘su2.a’, using the
command:

make -f Make_MACHINE su2.a >& make.log &

Similarly, on can make the individual libraries by name with the command make -f Make_
MACHINE complex.a su3.a >& make.log &

5.2 Making the Applications

Most application directories have more or less the same structure. There is code to do various
high level things specific to the application, a ‘control.c’file with the main() program, and various
‘Make_MACHINE’ files.

Concept Index

Concept Index

A

Accessing fields at other sites 14
architecture specific Makefiles...................... 32
B

Bugs and features......... ... i 31
bugs Teports ... 3
Building the code.......... oo i i 32
Butterflies (FFT)...... ... o i, 19
C

CMS5 Iibraries.ooiiiii i 33
comdefs.h... ... o 7
complex.h 7
Copyright. ... 2
D

Data types ... i 22
DEC Alpha. 33
Details of gathers and creating new ones 18
Directory Layout i 3
Distributing sites among nodes. 26
doubleword boundaries i L 31
F

FE T 19
Files. oo 29
Free Software Foundation.................... 1
G

B e ettt 32, 33
o211 o [11
General description of the MILC Code 2
Global variables. i 8
globaldefs.h. oo 7
GNU General Public License..................... ... 1
H

header files i 7

35
I
1860 assembler.... i 31
1860 libraries. ...t 33
Intel Paragon....... ... o i i 17
mmterupts ... 17
IPSC-860 . .o 17
L
Last change.......... oo i 2
Lattice storage. ... 9
lattice.h .o 7
Tatbtice] . o oo et 9
Library routines 24
Libsu2. ... 3
Libsud. .. 3
M
Makefiles 32
making the applications. 34
making the libraries. oo 32
MILC Collaboration ...t 2
MILC Homepage......coovviiin i 1
Moving around the lattice............. 11
N
neighbor[]. ... 10
O
Obtaining the MILC Code 1
Optimized VEIsSiONS.oviiiieeeenennnenn.... 3
Overview of applications. 6
P
Portability 2
Programming with MILC Code 7

Q

questions to the authors............................. 3

36

R

Random numbers......... il 28
S

scalar (workstation) libraries....................... 33
Setup and initialization 6
SEBUP . € 9
SIBE L 9
SU2.h o 7
SU3.h o 7

The MILC Code (version: 4.0)

T

T3D librariesooo i 33

U

Usage conditions. ...t 1

\%%

workstation libraries. 33

WWW aCCess . ..o 1

Variable Index

Variable Index

%k

fieldoffset.........l
fieldpointer...................,

fixflag. ...

37
NElavorS .o 8
number of nodes........... i 8
nx,ny,nz,nt....... 8
odd_sitesonmode.............iiiiiii i 8
PATAIS . . oottt 9
saveflag ... 8
Sab . e 9
sitesonmode....... 8
startflag............ ...l 8
S OPS . 8
stepsQ ... 8
thismode 8
total dters 8
trajecs ... 8
VOLUME « o\ttt e e e e et it 8
L= o (11 OO 8

Table of Contents

1 Obtaining the MILC Code........................... 1
1.1 Usage conditionso.uueeiie i e 1

2 General description 2
2.1 Portability ...oooi e 2

2.2 Supported architectures ... 2

2.3 Directory layout e 3

3 Overview of applications............................. 6
3.1 Setup and initialization.........o i i 6

4 Programming with MILC Code..................... 7
4.1 Header files ..o e 7

4.2 Global variables. o e 8

4.3 Lattice storage 9

4.4 Moving around the lattice........ i 11

4.5 Accessing fields at other sites....... ...t 14

4.6 Details of gathers and creating new ones............ccoevvueenn... 18

A7 DAt B PeS ettt et e e e 22

4.8 Library 1outines.o it e 24

4.8.1 Complex numbers....... ... 24

4.8.2 SU(3) operations.ooouiuiiiiiiiiiiiiiiiiiiin., 25

4.8.3 SU(2) functions.........oooiiiiiiiiiiiiiiii 26

4.8.4 Miscellaneous functionst 26

4.9 Distributing sites among nodes ..., 26

4.10 Random numbers e 28

AL Fales oo 29

4.12 Bugs and features.o e 31

5 Building the MILC Code........................... 32
5.1 Making the Libraries...... ... 32

5.2 Making the Applicationsottt 34
Concept Index. 35

Variable Index. 37

