6

Helios for the Sun Workstation

Copyright

Copyright (C) 1989 Perihelion Software Ltd. All rights reserved. This
document may not, in whole or in part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Perihelion Software Limited, The
Maltings, Charlton Road, Shepton Mallet, Somerset. BA4 SQE. UK.

CSA and PART.8 are trademarks of Computer Systems Architects; Inmos,
B011, B014, B016, TDS, T414 and T800 are trademarks of the Inmos Group
of Companies; Helios is a trademark of Perihelion Software Ltd.; MS-DOS is
a registered trademark of the Microsoft Corporation; Parsytec and Paracom
are trademarks of Parsytec GmbH.; Sun Workstation, SunOS, SunView, and
the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems, Inc.; Telmat and ITFTP32 are trademarks of Telmat
Informatique; Transtech, MCP1000, and NTP1000 are trademarks of
Transtech Devices Ltd.; and Unix is a registered trademark of AT&T.

POSIX refers to the IEEE standard 1003.1-1988, Portable Operating System
Interface for Computer Environments.
This document was printed in the UK.

November 1989

Part number: DM5021

‘

Preface

This guide explains how to install and then run Helios on your workstation. It
supplements the information given in the Helios V1.0 manual, The Helios
Operating System (Prentice Hall, 1989). The guide is divided into three
chapters: the first chapter describes the actual installation procedure, the
second chapter describes the 1/O Server, and the third outlines the additions
and changes present in Helios V1.1. The information in Chapter 3 also
appears in the Helios Network Guide (DSL, 1989). Before starting work on
the installation, we suggest that you read the first two chapters carefully.

Although there are occasional examples that refer to specific hardware, this
document is intended to act as a generic guide to installing Helios on a Sun,
or an equivalent host, with additional transputer board(s). At present, you
can run Helios on a Sun3 or Sun4 Workstation with the following transputer
boards:

‘ CSA PARTS

Inmos B011

Inmos B014

Inmos B016

Niche NT1000

Parsytec/Paracom Sun Board

Transtech Multi-Computing Platform (MCP1000)

You can also run Helios on a Telmat UNIX workstation host with an
ITFTP32 transputer board. This machine is roughly equivalent to a Sun
Workstation and so you can equally well apply the information provided here
to install Helios on your Telmat hardware.

The list of supported hardware is growing all the time. To find out what is
currently supported, contact your local Helios dealer, or write directly to
;.‘ .‘ Distributed Software Limited, 1900 Aztec West, Almondsbury, BS12 4SD.

Table of Contents

. Chapter 1 Installing Helios on Sun Workstations
1.1 Introduction
12 Installation
13 Startup Options

Chapter 2 The Helios Unix I1/0O Server
2.1 The Windowing Interface
2.1.1 Sunview
212 Dumb Terminals
22 The Filing System Interface
23 The Error Logger
2.4 Multiple Links
25 Hydra
2.6 Other host.con Configuration Entries

3.1 Job Control in the Shell

3.2 Alias Server

33 Batch Server

34 Fault Library
341 Fault
342 Low Level Routines
3.43 Fault Database Format

3.5 Technical Changes

3.6 Component Distribution Language
3.6.1 Component Attribute Code
3.6.2 Subscripted Component Declarations
3.6.3 Replicators
3.6.4 Multi-Dimensioned Replication
3.6.5 Iteration Names
3.6.6 Precedence of Constructors
3.6.7 Automatic Allocation of Streams

F‘ . 3.6.8 Subscript Expressions

‘ Chapter3 Helios Version 1.1

369 CDL Compiler
3 3.6.10 CDL Scripts
3.6.11 New CDL Syntax
3.7 New Commands in Helios 1.1

38 Network Support
3.8.1 Control System
382 Network Commands
3.9 The Session Manager
3.10 New Functions

3.11 Changed Functions
3.12 Extended Functions

Chapter 1

Installing Helios on Sun Workstations

This chapter describes the Helios/Sun release and explains how you can
install it on your hardware, which must be using SunOS 4.01 or a later
version. The first part of this chapter outlines the installation procedure and
then describes the work involved in installing Helios for a number of
different configurations. The second part of this chapter specifies the various
initialisation options that you can use to define the way in which Helios starts

up.
1.1 Introduction

The basic unit of hardware used by the Sun I/O Server is the transputer site.
A site consists of a link adapter attached to at least one transputer. In the
current implementation, every active user of Helios needs his or her own site:
this site may be accessed directly, with the I/O Server running on the Sun
with the transputer hardware; or it may be accessed indirectly, running the
I/O Server on a remote Sun and a link daemon, Hydra, on the Sun with the
transputer hardware to provide access to the link. Sites are given numbers
from 0 onwards. For example, the CSA PART.8 board has four link adapters
and hence four sites, site 0 - site 3.

The Helios/Sun product comes on a single cartridge tape, written to
/dev/rst8 on a Sun-3 unless otherwise requested; no special blocking factors
are used. The tape contains two directories: sunbin, which has a number of
executables to run on the Sun host; and helios, which contains the normal
Helios files for the transputer side.

The directory structure for helios is as follows:

Installation Helios for the Sun

Directory Name Contents
bin Various user commands
lib Binary files used by the system .
include The C compiler’s include files ‘
tmp Temporary files
etc[0...n] Various system textual resource files, some of

which depend upon the hardware attached to the
different sites
etc.master A backup copy of the various efc directories

1.2 Installation

The following steps outline the different stages in the intallation process.

1. The first stage in the installation process is to extract the sunbin and
helios directories from tape, using

tar fxv /dev/rst8 ’

Note that you will require approximately two megabytes of disc space.
After extracting the directories it may be necessary to modify the owner,
group, and access permission of the files to reflect the conventions at
your installation (an installation can be a Sun host and hardware or an
entire network of Suns plus additional transputer hardware). In most
circumstances, users need read access to helios/bin, helios/lib, and
helios/include, but read/write access to tmp and the various etc
directories.

2. The next stage is to install the various Sun executables in the sunbin
directory, so that they can be accessed by all users. The executables exist
in Sun-3 and Sun-4 format. In theory the Hydra link daemon and the
hydramon monitor program do not have to be available to ordinary
users, only to the installation administrator, but it may be easier during
the initial stages to allow general access to these programs. The
serverwindow and serverwindow.sun3 programs are run by the Server as
separate processes, never by the ordinary user, and should be kept ia
the helios directory; serverwindow is the Sun-4 version, and
serverwindow.sun3 is for the Sun-3. The I/O Server must always be
accessible to ordinary users.

1-2

Helios for the Sun Installation

3. As the default Helios directory, /home/sp2sun1/userl/helios, is unlikely
to be correct for your installation. You must next modify the master
host.con Server configuration file, to reflect the location of the Helios
directory within your host’s filing system. After you have updated the
master copy, every user should make his own copy of the configuration
file in his own home directory, and always run the I/O Server from that
directory, never from within the helios directory. A user can make his
own copy of the helios directory and work within that, modifying his
private host.con file, but this will use an additional 2 Mbytes of disc
space for each user. Notice that the Server will always pick up the
host.con file from the current directory, unless you introduce an
alternative filename with the -C option when you invoke the server
command.

4. The final part of the installation process determines the networking and
transputer site allocation, which depends very much on both the
hardware and the users’ requirements. The available options are
described here, along with an outline of the work involved, but this
description should only be regarded as a guide line.

‘ 1.2.1 Option 1

The simplest option involves a single Sun (not networked) with a single
transputer plug-in board containing four transputers and four link adapters
(for example, a Transtech MCP1000 board). This configuration is intended
for four users, each with just one transputer. In this case the Server will
always run on the Sun with the board, so there is no need to go via the link
daemon, Hydra. All the sites are equivalent and there is no need for users to
be allocated a particular site because of the hardware attached to that site.
Every user should therefore comment out the line

site = x

in their configuration file, host.con, which means that they will be allocated
any free site when they run the I/O Server. The installation administrator

. should also comment-out the lines

Installation Helios for the Sun

run -r startns

and

waitfor /tfm

from /helios/etc[0...n]/initrc, as there is no need to run the Network Server
on a single transputer network.

1.2.2 Option 2

The next level of complexity is to have the same hardware as described in
Optionl, but this time with a maximum of two users, each with access to two
processors. On a Transtech MCP1000 board this means that site 0 uses the
processors corresponding to /dev/nap0 and /dev/napl, and site 2 uses the
processors corresponding to /dev/nap2 and /dev/nap3. Under no
circumstances should the Server try to use sites 1 or 3, as there is no way to
detect from the Sun side that the corresponding root processors are already
being used. Before running the Server, connect the processors together using
the nt_ctl utility. Each user’s configuration file, host.con, should contain a
reference to either site 0 or site 2, but note that the Server will issue an error
message if that site is already being used. As each user now has a network of
two transputers, you should use the Network Server to boot-up the second
processor; /helios/etc[0...n]/initrc should not be modified. You should also
ensure that the resource map specifies the correct reset driver, tram_ra.d.

You can build networks with three or four transputers, using just the
transputer board, by adjusting the network resource maps and the host.con
file as appropriate.

1.2.3 Option 3

The next level of complexity is to attach additional transputers to some or all
of the sites, but keeping the resulting networks separate. This would allow
four users, each with multiple transputers. If all four sites have the same
network attached there is no reason to run on any particular site, so the
host.con files should not specify a particular site. If the sites have different
configurations, users may wish to run on a particular site, and they can
specify this in host.con. Once this level of complexity is reached, it is assumed
that the various users of the system will cooperate with each other.

1-4

Helios for the Sun Installation

If all four sites have different network configurations they will require
different network resource maps, which is fairly straightforward as every site
has its own private copy of /helios/etc[0...n]: etcO is used for site 0, and so on.
The reset driver used for the network depends on the hardware.

Note that any sites not currently used by Helios can be used for other
applications, such as TDS.

1.2.4 Option 4

The final option allows all the sites to be accessed remotely over the ethernet.
In this case it is necessary to run the link daemon, Hydra, on a Sun
workstation with a transputer board, and this requires a number of
installation steps.

1. Add the Hydra internet service to the system configuration file,
/etc/services, as a tcp service, with a unique socket number; this
addition must be made on every machine that will run either Hydra or
the Server.

2. Modify the hydra.con configuration file. In particular, you must change
the line specifying the hydra_host to indicate the network address of the
machine running Hydra; this network address must correspond to an
entry in the /etc/hosts file.

3. Modify the host.con file to indicate a remote transputer box; again, the
hydra_host line must be modified.

If you wish, you can allow remote access to only some of the sites by listing
those sites rather than all sites in the hydra.con conﬁguratlon file. The
remalmng sites can then be accessed directly, which is more efficient than
going via Hydra, but does not allow networked access. You can also change
which sites are accessible remotely using the hydramon program. This is
discussed in more detail in the next chapter.

15

Installation Helios for the Sun

1.3 Startup Options

When Helios is booted into a transputer that is connected to the 1/O
processor, it executes /helios/lib/init, which in turn reads the text file
etc[0...n] finitrc. This text file can be edited by the user to define the way in
which Helios is to start, and can contain any of the commands listed below.

comment
Any line in initrc which starts with # is treated as a comment and is
ignored.

auto servername
The auto command adds the specified name, servemname, into the Name
Server. This means that the server will be loaded on demand from
/helios/lib when it is first used.

console servername windowname ...

The console command creates one or more windows using the specified
server, servername, and provides the window windowname as output for
commands executed from within initrc. Until you specify console, any
output from tasks such as the Network Server will go to the flogger
device. Note that in the I/O Server the standard initrc file contains an
entry at the end to run login; this will only work if a console command
has been given in order to create a window. If no console has been
created then the login process must be created by the Batch Server by
adding a suitable entry in the file etc/batchrc, which provides an
environment for login.

ifabsent servername command
The ifabsent command determines if the specified server, servemame,
exists; if that server does not exist, it treats the rest of the line as a
command which it will execute. command must be one of the
commands listed in this section.

run [-e] [-w] pathname [argv ...]
run executes the command whose full pathname is passed as the
argument pathname. The -e option passes the environment to the
command, and the -w option forces run to wait for the command to
terminate before it terminates itself. The following argument vector,
argy, consists of the command name and each of its arguments; it is only
used if you specify the -e option. Any program started using rum -e will

1-6

®

Helios for the Sun Installation

subsequently have standard streams to a window created by console, or
to the error logger if no console has been specified.

waitfor server_name
The waitfor command waits for the server specified as server_name to
be loaded before it terminates. If the server has not been loaded,
waitfor will result in it being loaded. (assuming that the name is
defined).

The following is a listing of the configuration file that is shipped with this
release of Helios.

Helios System Configuration File

This file is interpreted by init to configure the system
it is NOT a shell script.

ifabsent /window auto /uwindow

waitfor /window

console /window console

run -e /helios/bin/startns startns -r /helios/etc/defaul t.map
waitfor /tfm

#run -e /helios/lib/sm sm

run -e /helios/lib/bs bs

#run -e /helios/bin/smlogin -

run -e /helios/bin/login -

If the Window Manager is running as part of the 1/O Server, the test

if absent /window

will fail and the system will create a console window using the host’s
windowing system. If the Window Manager is not part of the I/O Server then
the first two command lines in this program will install the Window Manager:
auto adds the Window Server’s name into the Name Server, waitfor then
waits for the server to be loaded. This may appear to be a somewhat verbose
way of loading the Window Server, but it is necessary because run alone
would only load the server; it would not create an entry within the Name
Server. It should be noted, however, that some servers add their own names
into the Name Server, and can therefore be loaded successfully with run.

Having created the Window Server, the program uses the console command
to create a window called console. The environment provided by this window
is then noted by imit, so that it can be passed on to subsequent rum
commands that are invoked with the -e option. In this configuration file, all
subsequent run commands are passed this environment so that their output
is sent to the console window instead of to /logger.

1-7

Installation Helios for the Sun

After applying the run command to startns, the program loads the Batch
Server. One of the first tasks that the batch server performs is to read the job
description file, etc/batchre. In this release of Helios the job description file is
empty, but it can be modified by the user. Full details of the syntax are given
in the description of the Batch Server in Section 3.3.

Chapter 2

The Helios Unix I/O Server

This chapter describes the various facilities provided by the Helios 1/0
Server, version 3.72, when running on a Unix machine. It is intended to
supplement the chapter on the I/O Server in the Helios manual, The Helios
Operating System (Prentice Hall, 1989), and is aimed primarily at the Sun I/O
Server with a transputer board (although it should also be relevant to other
Unix versions). In particular, this chapter describes the various ways of
configuring the I/O Server using the host.con configuration file. This
configuration file usually resides in the current directory, and is used when
the Server starts up. It is possible to specify a different configuration file on
. the command line using the -C option, for example,

server -C ../../dumbterm.con

This option is particularly useful when combined with shell aliases, allowing
the user to have different commands for the different configurations. Every
user should have his or her own copy or copies of this configuration file.

2.1 The Windowing Interface

The Sun I/O Server can provide multiple windows on the host side, either
using real windows on a SunView display or multiple pseudo-windows with
hot-key switching on a dumb terminal; the latter gives a similar environment
to the I/O Server used with Helios/PC. To determine which windowing
system to use the I/O Server examines the TERM environment variable: if
this is set to "sun", real windows will be used; pseudo-windows are used in all

‘ other cases.

The I/0 Server Helios for the Sun

It is possible to disable multiple windows on the host side and use multiple
windows on the transputer side instead, by commenting out the line
Server_windows in the host.con file. In this case the transputer will run the
program /helios/lib/window, which should provide multiple windows one
way or another. This option is unlikely to be useful for the Sun I/0 Server.

2.1.1 SunView

When running the 1/O Server under SunView, Helios will use real SunView
windows for its own windowing operations. All Helios operations which
create a window will therefore create a new SunView window. These
windows use the standard Helios escape sequences for input and output, as
documented in The Helios Operating System. In addition, the I/O Server will
inherit the special tty keys for erase, intr, start, and stop, and will map these
onto the Helios equivalents.

Note that most programs only check the screen size at start-up, and cannot
therefore be correctly used with windows that are resized during program
exccution. This is a result of the way in which each individual application has
been written, and is not a restriction that is imposed by the 1/0 Server.

The 1/0 Server has its own window for its debugging output. This window
has a control pancl for the various facilities available within the I/O Server.
There are buttons for rebooting Helios, for terminating the 1/O Server and
returning to Unix, for entering the I/O Server’s low-level debugger, and for
obtaining the Server status. The error logger destination can be toggled, and
there is a pop-up menu for the debugging facilities. The left mouse button
can be used to enable or disable all debugging options, and the right button
can be used to select a particular option as follows (the keys in brackets are
used with dumb terminals):

Helios for the Sun The 1/0 Server

Option Action
Resources (x) List all open streams.
. Reconfigure (z) Re-read the host.con configuration file. Please note

that some of the options do not take effect until
you reboot the transputer, and some of the options
are only checked when the Server starts up.

Messages (m) Report on messages sent by/to the transputer
network.

Search (s) Report all distributed searches.

Open (o) List all files being opened.

Close (p) List all files being closed.

Name (n) Give the names of all objects Helios tries to access.
' Read (r) Report all file reads.

Boot (b) Progress report during transputer bootstrap.

Keyboard (k) Report all key presses.

Init (i) Progress report while device servers are starting.
Write v(w) Report all file writes.

Quit (q) Give a progress report while the Server is exiting.
Graphics (g) Report any graphics operations.

These debugging options can also be enabled on the command line. For
example, server -opr starts the I/O Server with the open, close, and read
‘ debugging options enabled. This is compatible with the PC version of Helios.

For a number of reasons the I/O Server has to fork a new program whenever
it creates a mew window. Usually this is serverwindow for a Sun-4, or
serverwindow.sun3 for a Sun-3, but it is possible to specify some other

2-3

The I/O Server Helios for the Sun

program in the configuration file. The following example would cause the
Server to execute myservwindow:

serverwindow = myservwindow

2.1.2 Dumb Terminals

When the I/O Server is executed from a dumb terminal, the Server will use
its own windowing system. In this environment only one window is visible at a
time, although the others can be viewed by applying special key sequences.
Output to non-visible windows proceeds normally, and will become visible
when the user switches to that window. The termcap database and the
TERM environment variable are used by the I/O Server to interpret the
standard Helios output escape sequences, and to map the terminal’s input to
the Helios input sequences when necessary.

The I/O Server has its own window that is not directly accessible from
Helios. This window is used for the Server’s error messages, and may be used
as the destination for the error logger. When output is written to the Server’s
window, this window will pop to the foreground allowing the error messages
to be observed. To disable this option, you can insert the line:

Server_windows_nopop

in the configuration file.

The 1/O Server uses a number of special keys or key sequences to control
reboots, debugging options, window switching, and so on. The keys for these
operations may have to be different for different terminals, so they can be
defined by the user by adding entries into the configuration file. A possible
host.con entry is

escape_sequence = k1

This specifies that the main hot-key is function key 1, k1 being the termcap
name for that function key. Other termcap names are described in the
standard Unix documentation, but the most common ones are k1-k9, which
represent the first ten function keys, kh for the home key, and ku, kd, kr, and
k1, for up-arrow, down-arrow, right-arrow, and left-arrow respectively.

2-4

Helios for the Sun The I/O Server

To perform the various Server operations, you simply press the appropriate
hot-key, followed by another key, as specified below.

‘ Keys Operation
<hot key> 1 Switch to next window.
<hot key> 2 Switch to previous window.
<hot key> 3 Refresh current window.
<hot key> 7 Enter debugger.
<hot key> 8 Server status.
<hot key> 9 Server exit.
<hot key> 0 Reboot transputer.
<hot key> a Toggle all debugging options.
<hot key> 1 Switch error logger destination.
<hot key> x Resource debugging.

Re-read configuration file.

<hot key> z
(More operations may be added)

The same mechanism can be applied to the debugging options described

’ earlier.

Some of these operations are used more often than others, and it is
convenient to have them as single-key operations rather than a two-key
sequence. The following lines can be added to the host.con file to assign these
operations to function keys:

switch_forwards_key = k2
switch_backwards_key = k3
refresh_key = k4
debugger_key = k5
status_key = ké6
exit_key = k7
reboot_key = k8

Your terminal may have keys for which there is no termcap entry, or for
which the termcap entry is incorrect. You can still use these keys as escape
keys if you specify the key’s data in the host.con file. If you need do this, you
must always prefix the key’s data with a ‘#’ character. For example,

The I/0O Server, Helios for the Sun

escape_sequence = #\E"Q\0120\n

specifies that the main hot key generates an escape character (hex 0x1B),
followed by a CTRL-Q (hex 0x11), the octal number 12 (hex 0x0A, or ASCII
linefeed), the letter O’ (hex 0x4F), and another linefeed (hex 0x0A). You can
enter a space by using its octal value, 040, and backslash and caret by using

\\ and \" respectively.
The I/O Server translates the termcap sequences into the following Helios
sequences:
Termcap Helios
k1-k9 Function keys 1 to 9
k; Function key 10
&8 Undo
@7 End
kl Insert
kN PageDown
kP PageUp
kh Home
kd Down-arrow .
ku Up-arrow
kr Right-arrow
kl Left-arrow
%1 Help

If any of these are used as special keys for the I/O Server they cannot be
read by Helios; any other keys are passed to Helios without translation,
Helios programs should not, in general, make assumptions about the keys
that will and will not be available on a particular terminal.

To perform the translation of Helios escape sequences to screen operations,
the I/O Server uses the following termcap entries:

2-6

Helios for the Sun The 1/0O Server

Termcap Description

bl Bell sequence; used in preference to CTRL-G

c Clear screen

cm Cursor move

mr and me, Inverse/Normal video

or so and se

ce Clear to end of line

am Determine some of the terminal’s wrapping
characteristics

ro and co Determine the terminal size

If any of the above are not defined correctly, then the Server’s behaviour is
undefined. In addition, the exact nature of a terminal’s line wrapping may
cause the display to become confused, so a screen refresh key-sequence is
provided.

2.2 The Filing System Interface

The 1/O Server provides two Helios servers to allow access to the host’s
filing system. The first is /helios, which contains all the standard Helios files
and binaries. The second is /files, which maps onto the root of the Unix filing
system, so that, /Cluster/IO/files/usr/games is the same as the Unix
directory /usr/games. All files and directories on the Unix filing system are
accessible from Helios, including networked drives. However, Helios does
not provide its users with any access authority other than their standard Unix
ones.

The location of the main Helios directory depends on the site, and must be
specified in the host.con file, together with some other files, as follows:

27

The I/O Server, Helios for the Sun

helios_directory = /home/sp2suni/helios
bootfile = ~/lib/nboot. i
system_image = ~/{ib/nucleus

The tilde characters (~) in the last two entries indicate that they are relative
to the helios directory, so in most cases it is only necessary to change the
helios_directory entry when installing Helios.

The various Helios files in the standard release occupy over a megabyte of
disc space, which is compact for a complete operating system, but
nevertheless it is not a good idea to have more than one copy of these files in
an installation. This creates a number of problems. Firstly, different network
maps may have to be used to boot up different transputer sites, even though
the Helios initialisation file /helios/etc/initrc only specifies one, which is
usually /helios/etc/default.map. Also, copies of Helios are serialised and
there is checking within Helios to prevent multiple users from using the same
copy of Helios. To overcome this, all accesses to the /helios/etc directory and
to the /helios/lib/net_serv program are modified according to the site used.
For example, if the user is connected via site 2 and tries to access
/helios fetc/motd, the Server will actually access etc2/motd within the helios
directory.

Because the entire Unix filing system is accessible from Helios, the user can
also access the various devices and other objects. Character and Block special
devices are treated as private Helios objects, and cannot be used from
Helios. Symbolic links, sockets, and fifos are not supported in the current
release.

2.3 The Error Logger

The I/O Server contains a device, /logger, which may be used by Helios
programs for error output. By default, all data that is sent to the logger
device is diverted to the Server’s own window, but an alternative destination
may be specified by the user. When running under SunView this is done by
clicking a mouse button on the Logger cycle; on a dumb terminal it is done
by using the key sequence, <hot key>1. A Server status request will display
the current logging destination.

Helios for the Sun The I/O Server

If the logging destination is a file, or both file and window, any data sent to
/logger is appended to the end of a logfile. This data may be read from Helios
using standard commands; for example,

cat /logger

If you wish to empty the logger file, you can do this from Helios using the
command-line:

rm /logger

Alternatively, when the Server exits, any data written to the logger will be
preserved in the logfile, whereupon you may examine it at your leisure. The
file will be cleared when the Server is run again.

There are two entries in the host.con file that control the behaviour of the
error logger. The first entry, logfile = <filename>, specifies the file that is to
be used to store logging output; the default is logfile in the current directory.
The second entry is logging destination, which can be set to screen, file, or
both, and controls the initial logging destination. The following example
entries would cause any data written to the logger to go to a file called

logbook.

logfitle = {ogbook
logging_destination = file

2.4 Multiple Links

On many Unix-hosted transputer systems the host has multiple link adapters
into a transputer network or into different transputer networks. If each link
adapter is connected to a different root transputer, then it is possible to have
multiple users running Helios. This combination of link adapter, root
transputer, and possibly some additional transputer network is known as a
site. For example, some transputer boards have four sites, allowing four users
to run Helios at the same time. Any site not currently used for Helios can be
used for other software, such as TDS.

The I/O Server must be able to interact with the link adapter, directly or
indirectly. If the I/O Server runs on the host with the link interface, it can
access the link directly. If a user wishes to access transputers in a remote
machine over the Ethernet (or other local network), and still have the

29

The I/0 Server Helios for the Sun

benefits of real windows etc., then the I/O Server must run on his own
machine and interact with the link via a link daemon known as Hydra.
Communication between the I/O Server and Hydra takes place using
TCP/IP sockets over the Ethernet.

As each transputer site may be different, there must be some way for the
user to specify which site they will use. This can be done by adding a suitable
entry into host.con, in the form site = 0, site = 1, etc. Note that the sites are
simple integers which are mapped onto the actual hardware by the Server.
On a Sun with a Transtech board, site 0 corresponds to the link device
/dev/nap0, site 1 corresponds to /dev/napl, and so on.

The Telmat workstation can incorporate up to eight different CPU modules,
each accepting up to eight transputer boards. As a result, 8x8 ITFTP32 link
interfaces can run at the same time. The device link name and the site
number are declared by the following formula:

the device link name = /dev/link<x>_mt<y>

where

<x> = the interface board number
(x can take the values: 0, 8, 16, 24, 32, 40, 48 or 56)

and

<y> = the CPU module number
(y can take the values: 0,1,2,3,4,5,6 or 7)

the site number = (<x> /8) + (8 * <y>)
For example, the board plugged at address 24 of CPU module number 2 has
the name /dev/link24_mt2, and the site number to declare in the host.con file
is 19.
If no site is specified in the host.con file, the Server will choose any available

site. At some future stage it is intended to provide a dialogue between the
Server and the user to allow the latter to choose a site interactively.

2-10

Helios for the Sun The I/O Server

The configuration file controls whether the Server communicates directly
with a link device (in which case it has to run on the same host), or that it
interacts with the link daemon, Hydra. The former is significantly more
efficient as it avoids the communication overhead within the Unix world, but
it does not allow remote access. The relevant entry can be

box = <hardware name>
or
box = remote

If the entry specifies a particular piece of hardware, NTP1000 for the
Transtech Sun board, ITFTP32 for the Telmat board, then the Server will
interact directly with the link; if the entry specifies remote, then the Server
will interact with the link daemon, Hydra.

If the box is specified as remote, the Server will interact with Hydra over a
TCP/IP socket. This socket can be within the Unix family or within the
internet family, and is controlled by the family name entry in the
configuration file; a setting of AF UNIX or AF_INET should be used as
appropriate. With the Unix family it is necessary to specify a name within the
Unix filing system for the socket. For example,

family_name = AF_UNIX
socket_name = my_socket

uses a Unix socket called my socket in the current directory. The default
family is AF_UNIX, and the default socket name is hydra.skt.

If the socket family is AF_INET, the Server will use the normal networking
routines to connect to the Hydra daemon. It needs to know the network
name of the machine on which Hydra is running, and this is specified by
using the hydra_host entry in the configuration file.

hydra_host = sp2suni

This host name must correspond to an entry in the /efc/hosts file. Given the
host address, the Server uses the network routines gethostbyname() and
getservbyname() to obtain a socket identifier. This requires the installation
administrator to enter hydra in the file, /etc/services, when Helios is installed.
The file should be modified on each of the machines which is likely to be
used for running Hydra or the I/O Server. The entry should like this,

2-11

The 1/O Server, Helios for the Sun

hydra 1234/tcp

where 1234 is any socket number not used by other services.

It is possible that Hydra may be unable to accept a new connection
immediately. This is particularly true if the system is heavily loaded by one or
more users who are booting at the same time. Under these circumstances the
Server will display the message

Hydra is busy...

and retry after a short delay. The number of retries is specified in the
host.con file by the entry, connection_retries. The default value is 5.

The protocol used between Hydra and the Server is independent of the
hardware, and hence the two programs may run on completely different
machines. For example, it is possible to run Hydra on a Sun-4 and the I/O
Server on a Sun-3, or vice versa.

2.5 Hydra

The link daemon, Hydra, is a separate program which is normally under the
control of the installation administrator, and is run automatically when the
host boots up. A separate monitoring program, hydramon, can be used to
interrogate Hydra to determine which sites are currently in use, and by
whom. In addition, it can be used to disconnect a particular Server and
release the site; this disconnection occurs immediately, and may result in the
loss of data, so access to hydramon is normally restricted. Hydramon also
allows sites to be released, which means that Hydra will no longer allow
access to those sites, and allows sites to be used again.

Both Hydra and the hydramon program read the configuration file hydra.con.
A typical hydra.con file might look something like this:

2-12

Helios for the Sun The 1/0 Server

host = SUN

box = BO11
hydra_host = sp2suni
#family_name = AF_UNIX
#socket_name = my_socket
family_name = AF_INET

connection_delay = 25
#all_sites

The hydra.con file closely resembles the host.con file, although there are
fewer options. It specifies the type of host and transputer network, and the
network address of the host. This network address should correspond to an
entry in /etc/hosts. Like the Server, Hydra can use either Unix or internet
sockets, and for internet sockets the system administrator must add Hydra to
the list of available services in /etc/services, using any free socket number.
Connection_delay specifies a delay in seconds between accepting new
connections from Servers; the bootstrap process requires a considerable
amount of input/output, so having multiple users booting up within a short
time of each other may overload Hydra.

The final entries in the file specify which sites are to be used by Hydra. It is
possible for Hydra to use all available sites, or only a selected number of
sites. The latter option is useful to allow users to access particular sites
without going via Hydra, or even to run software other than Helios on these
sites. Hydra only locks sites that are currently running Helios, so it is possible
to access a site directly even if it is one of the sites accessible via Hydra.

For reliable operation, Hydra must put the link devices into non-blocking
mode. Given the lack of memory protection in the transputer hardware, it is
perfectly feasible for the transputer to crash in the middle of link traffic, in
which case Hydra should be able to recover rather than hang on a read or
write. If the device does not support non-blocking mode it is possible for
every Helios session to hang because of a single transputer crash, and Hydra
will display a warning to that effect.

The 1/0 Server Helios for the Sun

2.6 Other ‘host.con’ Configuration Entries

There are a number of other entries in the host.con configuration file which
can be changed by the user; examples of these are listed below.

message_limit = 30000 . . .
specifies the maximum size of the data vector that is used to

transfer messages between Helios and the I/O Server. On a Unix
system it is very expensive to have small message limits, because
transferring data to and from the link involves switching between the
1/O Server and the operating system. Having smaller limits can avoid
problems on some other machines, but is unlikely to do so under Unix.
The maximum message limit is 64000.

root_processor = /00
nder Helios, every processor has a name. The name of the root

processor is controlled by the I/O Server, and cannot change while
Helios is running. The default name is /00, but it can be changed via the
configuration file.

io_processor = /sun
The 1/O processor behaves just like a transputer within the Helios

network, and hence it too must have a network name. The default name
is /IO, but this can be controlled by the user.

transputer_memory = 0x200000 .
On a normal system, Helios itself determines the amount of memory

attached to the transputer. Problems may be experienced if the main
transputer memory is followed immediately by video memory or other
hardware, as Helios will attempt to use this memory as well. By
specifying the amount of memory using this entry in the configuration
file, Helios will not attempt to use the special areas. You should ensure
that this option never specifies a larger amount than that which is
actually available; if you ignore this warning, Helios will attempt to use
non-existent memory. The example entry shown above specifies that the
system has two megabytes of memory (using hexadecimal).

bootlink = 1
On most transputer hardware the 1/O processor is connected to link 0

of the root transputer, so Helios assumes that this will always be the
case. If your hardware is different you should specify an alternative by

applying this entry.
2-14

Helios for the Sun The I/O Server

Here is an example host.con file:

host SUN

box B014
#site =0

#box = remote
#family_name = AF_UNIX
#socket_name = silly
family_name = AF_INET
hydra_host = sp2sunl
connection_retries = 10

message_Limit = 60000

helios_directory = /home/sp2suni/useri/helios
system_image = ~/lib/nucleus

bootfile = ~/lib/nboot.1

logfile = logbook
logging_destination = screen

#transputer_memory = 0x100000
bootlink = 1

#root_processor = /00
#io_processor = /sun

. Server_windows

#server_windows_nopop
escape_sequence =ku
switch_forwards_key = kl
switch_backwards_key = kr
#status_key = kd
#debugger_key = kl
exit_key = kd
#reboot_key = kr
#refresh_key = kd

With this configuration file the Server would interact directly with a link
adapter rather than going via Hydra, and it would choose any free site. On a
dumb terminal the cursor keys would be used for escape sequences. The
other options are all standard.

Chapter 3

Helios Version 1.1

This chapter summarises some of the major additions and changes in Helios
version 1.1

3.1 Job Control in the Shell

When a command is executed in the background using the shell
metacharacter &, it is referred to as a job. Whenever the shell creates a job it
assigns it a job number and a process identification number (process id). It
then displays these identifiers to the user in a line of the form:

[<job_number>] <process_id>

A complete list of all the current jobs and their associated numbers are
maintained by the shell, and can be viewed with the jobs command.

When a job has been created there are two operations which the user can
perform on it: it can be brought to the foreground or it can be terminated.
For either operation you will need to know the job’s name.

Job Name Description

%<job_number> The job with the specified job number.
9% The current job.

Yo+ The current job.

Y- The previous job.

Each of the character sequences shown above can be supplied as an
argument to kill or fg to terminate the specified job or bring it to the
foreground. The character sequences can also be entered directly into the

31

Helios Version 1.1 Helios for the Sun

shell, and will have the same effect as if they were supplied as arguments to
fg. Full details of kill and fg are given in Section 3.7, "New Commands in
Helios 1.1".

Whenever a job terminates, the shell removes the job from its internal list
and displays a message of the form:

[<job_number>] <exit_status> <command>

The exit_status in this message takes one of three forms. If the command
terminated successfully then the message is "Done". If the command exited
with a non-zero exit code, the message takes the form "Exit n", where n is the
the argument which was passed to the exit function. If the command was
terminated by a signal, then the message describes that signal. For example,
if job number 1 terminates because of stack overflow, the shell displays:

[11 Stack Overfiow myprog

3.2 Alias Server

There is a new server, lib/alias, which allows the user to assign an alias to a
directory name. The syntax for this server is as follows:

/helios/lib/alias <name> <directory>

This command should always be run in the background, either by appending
the metacharacter & when entering the command into the shell, or by using
the run command in the startup file, initrc. A typical application of this
command is

/helios/lib/alias etc /helios/etc &

which causes all future references to /etc to be interpreted as /helios/etc.
This feature is particularly useful for mapping the Helios directory structure
onto that of another operating system; makefiles and shell scripts can then be
ported with very little modification.

Helios for the Sun Helios Version 1.1

3.3 Batch Server

The Batch Server provides a program scheduling service. It uses a job

‘ description language to define the program which is to be executed remotely.
It allows the user to specify the time at which the program will be executed,
its environment, and the interval at which it should be rescheduled (if
required).

The syntax of the job description language is given here in BNF:
<batch_description> ::= <job_description> <batch_description>
<job_description> := TFname [arguments] ‘{’ <parameters> ‘}’
<parameters> = ‘START <start_ time> <parameters>

‘REPEAT’ <repeat_delay> <parameters>

‘PARENT’ <name> <parameters >

STATUS’ <status> <parameters >
‘PRIORITY’ <priority> <parameters >

‘ ‘SYSTEM’ <parameters >
‘ENVIRON’ <envv>; <parameters >
‘OBJECTS’ <objv>; <parameters >
STREAMS’® <strv>; <parameters >

The parameters used in the job description are described below.

START

The START parameter gives the time at which the job (task force) should be
started (start_time). If no start time is given, or it is specified as 0, then the

task force is started immediately. The format is

<start_time> ::= [day]’[month]*’[year]"’[hour]’[minutes]’[seconds]

°-

dd:mm:yyyy:hh:mm:ss

33

Helios Version 1.1 Helios for the Sun

where dd is the day of the month, mm is the month of the year and yyyy is the
year. The time is given in 24-hour format by hh:mm:ss. For example,

26:11:1989:10:00:00

specifies a time of 10am on the 26th November 1989.

If any of the time fields are replaced by a tilde (‘~°) then the start time given
is added to the current time. Thus ~:~:~:2:20:00 will start the job 2 hours 20
minutes from the job submit time. If any date field is substituted by ‘~’ then
the current value is assumed. So if the current date is 26:11:1989:10:00:00,
then a start time of 28:~:~:~:~:~ will run the job on the 28th November at
10:00.

REPEAT

The REPEAT parameter specifies the delay between consecutive instances
of the job (repeat_delay).

<repeat_delay> ::= [hour]"’[minutes]*’[seconds]

Again, the the same format is used for the time (hh:mm:ss). If no repeat
delay is given then the task force is only executed once.

STATUS
The STATUS field gives the job status.

<status>
The default value of this field is 0, which means that the job is mortal and will
be deleted on error. If the value is 1 it means that the job is immortal and will
be automatically rescheduled on error. A value of 2 means the job will be
deleted immediately.

PRIORITY

The PRIORITY field is defined to allow priorities at some future date. It is
not currently used.

34

Helios for the Sun Helios Version 1.1

<priority> ::= number
SYSTEM
The SYSTEM parameter defines that the job is a system service and no
environment will be sent to the task force when it starts executing. Unless
this keyword is given, the job is a user job and is always sent an environment.

ENVIRON

The ENVIRON keyword is used to specify an environment string to the task
force.

<envwv> := name <enw>
OBJECTS

The OBJECTS keyword is used to specify objects, which must exist, to the
task force to be run. These objects are also passed in the environment.

<objv> := object_name <objv>
STREAMS

The STREAMS keyword is used to specify open streams which are to be
passed as the environment for a task force. Note that most C programs
require stdin, stdout and stderr to be defined within their environment.

<strv> ;= stream_name <strv>
TFname

TFname is the name of any executable task force (either an executable object
or a CDL object); however, the full context of the task force object must be
given. Here is an example script to illustrate the job description language:

/helios/lib/fastfiler -b -k/cache/bin {

start 10:9:1990:14:20:0

status 1

streams /null /null /helios/error/filelog;
) -

3-5

Helios Version 1.1 Helios for the Sun

/helios/bin/garbage_collect (
repeat 1:0:0
status 0
environ NOCACHE DEADBLOCK;
system

Having created the job description file, you can submit it with the runb
system utility. For example,

runb testscript.jb

creates the job and then passes it to the Batch Server for the component
programs to be executed as required. If the job description is syntactically
incorrect, runb will return with an error.

3.4 Fault Library

The Fault library is used to search a fault database for matching fault and
error codes. There are two ways of using it: via Fault(), which searches the
standard fault database in /helios/etc/faults; or via the routines fdbopen(),
fdbrewind(), fdbfind() and fdbclose(). Templates for all these functions are
to be found in fauit.h.

3.4.1 Fault

The first argument to Fault is an error code. If the value is less than zero, it
is interpreted as a Helios error code. If the value is greater than zero, but less
than or equal to the highest POSIX error code, it is treated as a POSIX error
code; otherwise, it is treated as a Helios function code. The second and third
arguments of this function are a message buffer and its size. The message is
added into this buffer as a null terminated string, and will be truncated if it
does not fit,

3-6

Helios for the Sun Helios Version 1.1

3.4.2 Low Level Routines

The procedures described here allow a private fault database to be used to
generate messages. The function fdbopen attempts to open the named file as
a fault database and will return NULL on error; fdbclose closes a fault
database. As the fault database is only searched forwards, fdbrewind
repositions the search point at the start of the file.

The function fdbfind searches the fault database for an entry. The second
parameter is the name of the fault class to be searched. The third parameter
contains the code to be searched for; only the bits of this value described in
the class entry’s mask field will be compared. The remaining two parameters
describe a buffer; the message corresponding to the code will be
concatenated onto the end of the existing buffer contents, but only if the
remaining space in the buffer is large enough.

3.4.3 Fault Database Format

A fault database is an ASCII file organised in lines. Any line beginning with
"#" is ignored. Numerical values may be given in decimal or in hexadecimal
(hex). Hex values must be preceded by "0x". A line beginning with a ‘!’ is a
class description: the first field is the class name, the second field is a mask
which indicates the bits that class occupies, and the optional third field gives
the C header prefix. A class ends with a line containing just "!!".

Within a class each line consists of a code name, a code value, and an

optional message string. If the message string is not present, then the code
name is used.

37

Helios Version 1.1 Helios for the Sun

3.5 Technical Changes

The Helios V1.1 kernel is faster than previous versions, particularly when it is
passing messages through a processor from one link to another. This kernel
also contains support for attaching routines to the Event line. Other kernel
features include a processor performance monitor and a port table garbage
collector.

The format of function codes has changed slightly to include a Retry field,
which is used by the Processor Manager to maintain a confidence level
associated with each name in the name table. When this level drops below a
certain threshold the name is removed from the name table, forcing a new
distributed search for it. This provides an extra level of recovery in the face of
processor and link crashes.

Module init routines are now called twice, once with a second argument of 0
and once with a second argument of 1 (this argument used to be undefined).

The arbitrary limit of 20 open files has been lifted in the POSIX library; any
number are now allowed. However, the C library limit remains, largely as a
result of compatibility issues involved in the implementation.

The new Pipe Server provides bi-directional communication between
processes. A new server, /pipe, is used to support this and should be used in
preference to /fifo for inter-task communication. The shell and TFM now
use /pipe by default. Pipes, unlike fifos, have no internal buffering:
communicating processes which are connected via the Pipe Server interact
directly; the only buffering available is that supplied by the runtime system.

When booted, the kernel now ensures that it synchronises internally, and with
its parent, before continuing. For this reason BootLink() has been moved to
the system library, so any programs that call it should at least be re-linked.

The C compiler has been further optimised since the last release; in
particular, branch chains are now eliminated along with unreachable code,
and some peep-hole optimisation is performed at code generation. The head
label of all loops is now aligned to a word boundary to make maximum use of
the instruction fetch. All instances of mul have been converted to pred, since
Helios makes no use of the error flag.

Helios for the Sun Helios Version 1.1

The previous version of the C compiler used the wrong rounding modes for
the floating point conversion routines; this has now been fixed. The T800
floating point libraries are now correctly re-entrant, and the full set of
rounding modes are supported.

Open streams passed to a program in its environment (stdin, stdout, etc.) are
now not actually opened until first used. In doing this we have found that
program startup is now marginally faster than it was before.

3.6 Component Distribution Language

This section describes the enhancements that have been made to the
Component Distribution Language (CDL), for Helios 1.1. These changes are
designed to simplify the description of complex, multi-component task forces.
Compatibility with Helios 1.0 has been maintained as much as possible, the
only change which may cause problems is the introduction of a precedence
for parallel constructors.

3.6.1 Component Attribute Code

An additional attribute, ‘code’, is supported inside component declarations.
Code is used to introduce a filename which specifies the actual piece of code
to which the component refers. The effect of this is to remove the direct
association between the name of a component and the code that it executes;
for example, several components can now be defined, each having different
resource requirements and the same code. For compatibility with Helios 1.0,
if no ‘code’ attribute is specified, the name of the code defaults to the name
of the component. For example, the following CDL script:

component musthaveT414

L4
code myprog;
processor T414;
memory 100000;

>

component musthaveT800
4
code myprog;
processor T800;
}

39

Helios Version 1.1 Heclios for the Sun

musthaveT414 ~* musthaveT800 “* myprog

will execute three copies of ‘myprog’ in parallel. The first copy must exccute
on a T414 with at least 100000 bytes of memory, the second on a T800, and
the third has no preference. Each component refers to the same code, which
the CDL compiler locates by using the PATH environment variable. Note
that memory requirements must be specified in decimal.

3.6.2 Subscripted Component Declarations

Component declaration names can now be followed by one or more subscript
names. Each subscript name is separated from the next by a comma, and the
entire list is enclosed in square brackets. Within the body of the declaration,
any stream name can include a list of subscript expressions which reference
these subscript names. For example, the following component declaration:

component filterl[i]
{

code cat;

streams <| pipe(i}, >| pipe(i+1);
}

uses the subscript i. This name is used subsequently in two subscript
expressions within the body of the declaration; each expression is evaluated
when the component is referenced. Whenever a component declaration is
referenced within a task force definition, subscript values can be provided
which are bound to the subscript names within the declaration. The aim of
this is to be able to declare a component which, depending on subscript
values it is referenced with, communicates on different streams. Many
structures, such as arrays, can be defined by declaring a single component
which has subscripted stream names. The structure is then defined by
referencing this component with different subscript values.

Command names used with task force definitions may now be followed by a
list of subscript values that are enclosed in braces and separated by commas.
These subscripts may also be expressions, but for the purposes of this
explanation they are assumed to be values. For example, the task force
definition:

3-10

Helios for the Sun Helios Version 1.1

filter{0) ~ filter(1} " filter(2)

defines a task force which comprises three components. Each component

‘ refers to the component declaration for filter (given above), but in each case
different subscript values are passed into the declaration. The important
point is that stream names with different subscript values refer to different
streams. Thus filter{0} reads from the stream pipe{0} and writes to the
stream pipe{1}, filter{1} reads from stream pipe{1} and writes to stream
pipe(2}, and filter{2} reads from stream pipe{2} and writes to stream
pipe{3)’. As it stands the task force definition is incomplete because the
stream pipe{0} has no component writing to it and the stream pipe{3} has no
component reading from it. For a task force to be complete, each stream that
it uses must have one component reading from it and one writing to it. A
complete task force definition might be as follows:

cat >|pipe(0) ** cat <| pipe{2} **
filter{0) ** filter{1) ** filter(2)

which is a pipeline made up of five cat commands.

3.6.3 Replicators

In the previous version of CDL, replicators preceded constructors. For
example,

ls [31] cat

is equivalent to

ls | cat | cat | cat

thus replicating the constructor and its preceding command three times. This

is still supported, but Helios 1.1 also supports a new variation in which the

replicator directly follows the constructor. This new form of replication does

not define the constructor used to communicate with the preceding
' construction. For example,

3-11

Helios Version 1.1 Helios for the Sun

| 33 cat

is equivalent to I

cat | cat | cat

The first example in this section can therefore be written as:

ls | (|[2]1 cat)

This also affects the use of the interleave constructor (previously called the
farm constructor). The usual method of defining a farm construct,

control (31]|| worker

is still valid and is equivalent to:

control <> lb 3 (<> worker, <> worker, <> worker)

The load balancer command, Ib, is inserted automatically by the CDL .
compiler and is given the job of interleaving the input and output from
replications of worker. The particular implementation of Ib supplicd in the
standard Helios bin directory attempts to balance the workload on each of

the workers by way of a packet protocol; this can be overloaded as described

in The Helios Operating System, Section 7.5. We are not concerned here with

the implementation details of Ib, in fact we can ignore them altogether and

just think of the input and output of the workers as being interleaved.

The interleave constructor can also be used with the new syntax for
replicators. Using the new syntax, you would write the previous farm

construct as:

control <> (||| 3] worker)

This is more flexible because you can now make use of an interleave
construct as part of a pipeline, For instance, ‘

3-12

Helios for the Sun Helios Version 1.1

control_in | (]}|[3] worker) | control_out

defines a structure which looks like:

aeea>
I I
l c_in |--------> W |-------->] c_out I
I ! I |
LY 3 u -----

Note: Currently, the interleave constructor cannot be used as a binary
‘ operator but must always be used in conjunction with a replicator.

3.6.4 Multi-Dimensioned Replication

Whereas Helios 1.0 only allowed a single count within replicators, Helios 1.1
allows multi-dimensioned replication by accepting and interpreting a list of
counts, separated by commas. For example,

an [2,3]' node

is equivalent to

node ** node ** node “* node ** node “* node

The use of multi-dimensioned replicators will become apparent in the next

‘ section.

Helios Version 1.1 Helios for the Sun

Note: Multi-dimensioned replication of pipes and subordinates does not
produce a multi-dimensioned structure, but rather a one-dimensional
pipeline or bi-directional pipeline just as if a single-dimensioned replicator
was used. This may change in a future version and for this reason we
recommend that multi-dimensioned replicators are only used with the simple
parallel and interleave constructors. This should not present a problem as all
structures should be achievable with a full component declaration.

3.6.5 Iteration Names

An iteration name may be associated with each dimension of a replicator.
The replicated construction may contain command name subscript
expressions and stream name subscript expressions involving these iteration
names. When the replication is expanded, each successive replication is
passed values for the iteration name from 0 to one less than the number of
replications. The syntax for introducing iteration names is to precede the
replication limit by the name followed by a ‘<’ symbol. For example,

|Li<31 filter(i) ‘

is equivalent to the task force

filter(0) | filter{1} | filter(2)

Thus the earlier example can now be written:

cat >| pipe(0) ** (|[i<3] filter{i}) ** cat <| pipe(2)

The scope of each iteration name is the entire construction being replicated.
Since these constructions may contain further replication this scope may
contain ‘holes’ where the same iteration name is redefined. A reference to an
iteration name obtains the value of the most closely nested one of that name.
The scope rules are similar to the scope rules of variables in a
block-structured language. For example,

3-14

Helios for the Sun Helios Version 1.1

~Li<?, j<2) (adi, j> | Li<3] b(i, i

is equivalent to

(a{0,0) ~~ b(0,0) | b(1,0> | b(2,03) ~
(a0,1> ** b(0,12 I b(1,1> | b(2,13) *
(a{1,0) ** b(0,0> | b(1,0> | b{2,03) ~*
(a{1,1) ** b{0,1> | b{1,13 | b{2,13)

The i’ and §’ used with the ‘a’ component refer to the iteration names
defined in the first replicator, as does the j° used with the ‘b’ component. The
‘i’ used with the ‘b’ refers to the i’ defined in the second replicator.

The value of an expression involving iteration names can be passed as an
argument to a component. The expression is placed in the list of arguments
to the component in the task force definition and is distinguished from a
normal argument by preceding it by a % character. For example,

AMLi<3] node(i} i+t
is equivalent to
node{0} 1 ** node{1} 2 ** node(2) 3

Note: Whereas stream name subscript expressions are used to form complete
stream names, command name subscript expressions, once used to expand
the referenced component declaration, are of no further significance.

3.6.6 Precédence of Constructors

In Helios 1.1 each constructor has a unique precedence, as opposed to the
common precedence of all constructors in Helios 1.0. The constructors have
the following order of precedence, in ascending order from left to right:

O L I B

For example,

Helios Version 1.1 Helios for the Sun

a<b|ec

is equivalent to

(a<b)|c

rather than

a<o (b e)

(note the use of parentheses to override the precedence) and

a<w>b|c*d]|e

is equivalent to

((a<>b) | c)y*(d]| e

This affects the way in which streams are allocated and the configuration of
the resulting task force.

3.6.7 Automatic Allocation of Streams

The rules covering the automatic allocation of streams to task forces are
given below.

A simple parallel constructor, **, defines no communication between its
operands.

A pipe constructor, |, defines a single communication between its operands.
In general, for the task force

A|B

file descriptor 1 of A is connected to the file descriptor 0 of B. Note that in
this and in subsequent examples, A and B may themselves be task forces.

Helios for the Sun Helios Version 1.1

A subordinate constructor, < >, defines a pair of communications between
its operands. For example, in

A<B

file descriptor 1 of B is connected to the first auxiliary input of A (this is
defined to correspond to file descriptor 4 at the POSIX level), and the first
auxiliary output of A (POSIX file descriptor 5) is connected to the file
descriptor 0 of B.

The order of allocation of streams for a task force is defined by the
precedence of the constructors. Thus for

alb<wc

first the streams for the subordinate constructor are allocated and then the
streams for the pipe constructor. Streams for constructors of the same
precedence are allocated from left to right.

Once a file descriptor of a component has been overloaded it becomes a
hidden internal stream and cannot subsequently be overloaded. So, for the
previous example, file descriptor 0 of component ‘¢’ is initially overloaded by
the allocation of streams for the subordinate constructor and consequently is
not further overloaded by allocation of streams for the pipe constructor. The
example produces a structure that looks like:

3-17

Helios Version 1.1 Helios for the Sun

where each box represents a component; a line connecting two boxes
represents a stream, with the arrow giving its direction and the number
representing the file descriptor.

Stream allocation within an auxiliary list is a special case, because each of the
constructors within the list has the same left hand operand, as in the
following example.

master (<> slavel, | slave2, < slave3)

In this case, both subordinate constructors and the pipe constructor have the
same left operand, ‘master’. Each such constructor in an auxiliary list uses
successive auxiliary streams of its common component, with the proviso that
they are allocated in pairs. Remember that the first auxiliary stream
corresponds to POSIX file descriptor 4. An input is allocated on an
even-numbered file descriptor and an output on an odd-numbered file
descriptor. So, in this example, ‘master’ communicates with ‘slave1’ on file
descriptors 4 and 5, ‘slave2’ on file descriptor 7, and ‘slave3’ on 8 and 9.

3.6.8 Subscript Expressions

Subscript expressions are written in standard arithmetic format and may
contain integers, subscript names, binary operands, unary operands, and
parentheses. The binary operands that are supported here are as follows:

3-18

Helios for the Sun Helios Version 1.1

+ addition

- subtraction
* multiplication
% remainder

+ and - are also supported as unary operands.

3.6.9 CDL Compiler

In addition to supporting the enhancements described in this document, the
latest version of the CDL compiler has a few new features, which are
outlined here.

As mentioned earlier, the latest compiler validates the use of streams. Every
stream used by a task force must have one reader and one writer and any
other combination will result in a compilation error.

3.6.10 CDL Scripts

This section contains some example CDL scripts. In each we are not
interested in the details of the application code but merely in how to generate
the correct structure in terms of components and connecting streams.

In this first example, we wish to define a task force consisting of 10
components, where each component is a filter, reading on file descriptor 0
and writing on file descriptor 1. We require these streams to be connected to
form a ‘ring’ of components. To achieve this we first declare the following
component:

component nodeli)
(

streams <| pipe(i}, >| pipe{(i+1)X10};
>

The actual task force definition simply consists of a replicated structure of 10
invocations of ‘node’ running in parallel.

3-19

Helios Version 1.1

Helios for the Sun

A <101 node{i}

For our second example, we wish to generate a two-dimensional matrix of
components, where each component has two inputs and two outputs. A

diagram is the easiest way to show what we require.

v v
I I I
-a(0,03->| m(0,0) l-aco,1)->

v v
| | | I
-a(1,03->[m(1,03 [-a€1,1>->| m(1,1 I-a(1,2)->
I |
&2,0) (2,13
v v
I I !
-a(2,03->| m(2,0) I-acz,1>->

| I
mc2,1) I-a(2,2)->

|
m2,2) I-a(2,3)->

Sensible subscript values for components and strecam names is vital in
defining a complex task force; it enables the stream name subscripts of an
expression to be expressed in terms of the subscript values of the component.
This is exactly what we have done in the following component declaration:

component multli, j3
{
streams <| across{i,j},
<| down(i, j3,

>| across{i, j+13,
>| down{i+1,j);

Here ‘mult’ refers to the ‘m’ in our diagram, ‘across’ to ‘a’, and ‘down’ to ‘d’.
The task force definition replicates this component, passing the required

subscript values, and looks like:

3-20

(]

Helios for the Sun Helios Version 1.1

ALI<3,j<31 multdi, j2

Note: This example does not define a complete task force.

3.6.11 New CDL Syntax

This section gives an updated formal definition of the CDL syntax.

<script> ::= { <declaration)} <taskforce>
<declaration> ::= ‘component’ <name> <sub-names>
‘\(? { <attribute> [;’])} ¥
<attribute> ::= ‘code’ <name>
‘processor’ <ptype>
‘puid’ <name>
‘attrib’ <attriblist>
‘memory’ <size>
| ‘streams’ <streamlist>
<ptype> 13= V14147 | ‘T800’ | ‘ANY’
<attriblist> ::= <attrib> { [‘,’] <attrib>)
<attrib> ::= <pame> [‘[’ <number> ‘]’]
<streamlist> ::= <stream> { [‘,’] <stream>)}
<stream> ::= <mode> <name> [<sub-exprs>]
<mode> BERTY I ! l (P9 l \>|I | \<Il
<taskforce> ::= <interleave> { ‘**’ <«interleave>)}
| "' <replicator> <interleave>
] <replicator> <construction>
<interleave> ::= <pipeline>
*]]1’ <replicator> <pipeline>
<replicator> <construction>
<pipeline> ::= <subordinate> { ‘|’ <subordinate>)
‘|’ <replicator> <subordinate>
<replicator> <construction>
<subordinate> ::= <command> { ‘<>’ <command>)}
‘<>’ <replicator> <command>
<replicator> <construction>
<command> := <simple cmd> [<auxlist>]

‘(r <taskforce> ')’ [<auxlist>]

3-21

Helios Version 1.1 Helios for the Sun

<construction> ::= ‘**! <interleave>
‘MY <pipeline>
‘|! <subordinate>
| ‘<’ <command>
<auxlist> = V(! <aux> { Y, <aux>) ‘)
<aux> := |7 <taskforce>

| ‘< <taskforce>
| ‘<1 <taskforce>

<simple cmd> ::= <name> [<sub-exprs>)
{ (<arg> | <stream>))

<mode> sez V! | \>1? | >/ | \<|' | \>|'
<sub-names> ::= [<name> , { <name>)]
<sub-exprs> 2= V(' <sub-expr> { <sub-expr>) ‘)’
<sub-expr> $:i= <unary-expr> { <binary-op> <sub-expr>)
<unary-expr> ::= <number>

<name>

<unary-op> <sub-expr>
<binary-op> TIm VRO KT | ver] vy .
<unary-op> R L
<replicator> ::= ‘[’ <dimension> { , <dimension> } ‘]’
<dimension> ::= [<name> ‘<’] <number>
<name> 1= sequence of printable characters

<number> ::= sequence of decimal digits
3.7 New Commands in Helios 1.1

This section provides a detailed description of the commands: boot, c, dlink,
elink, fg, kill, Ibpcat, Icontrol, map, netversn, reset, run, runb, startns, and
tep.

322

Helios for the Sun Helios Version 1.1

boot

Purpose: To boot the given subnetwork.
Format: boot <subnet name>

Description:

boot first resets the subnetwork subnet name (this may just be a single
processor), enabling the Network Server to boot it. This command will not
return until the whole subnetwork is booted. For example,

boot /net/clustera

boots the subnetwork /net/clustera.

Note: There is a 60 second timeout on this command, so boot may return
with a timeout error when booting very large subnetworks, although the
subnetwork will still be booted.

Helios Version 1.1 Helios for the Sun

C

Purpose: To compile and link a program.
Format: c [opts] <filename> [<filename> ...]

Description:

The compiler driver ¢ is used to compile and link a program. It takes a list of
files and decides what to do with them according to their suffix. The filename
suffixes that are supported by the compiler driver are as follows:

Suffix Meaning

a Macro assembly language (AMPP source)

. C language

i FORTRAN language

.0 Object file format .
K Assembly language

If no other arguments are given, the program compiles the programs for the
languages specified as .c or .f, assembles any .s files and then links all the
resulting binaries, along with any supplied .o files, into an executable
program called a.out. A large number of options can be used to alter the
behaviour of the program, as follows:

Option Action
-b Don’t link with standard libraries (fplib and fpclib).
-c Compile/Assemble only, don’t link.
-d<name> Specify output file name for library .def compilations.
-€[6]7] Enforce FORTRAN standard.
-h<val> Specify heap size of program.
- Join objects but don’t link.
-1<name> Link with standard library <name>
(/helios/lib/ <name > lib.def).
-m Compile code for libraries.

3-24

Helios for the Sun

Helios Version 1.1

Option

-n
-n<string>
-0 <name>
-p)
-qg<stnng>
-s<val>

-t

-v
-w[acdfpsvz]
-A<flag>

B

-C

-D<name>
-D<name> = <val>

-Flfghmsv]

-I1<dir>
-L<name>
-M<name>

-0
-S

-V
-T[4{8]
-W<val>
-X<val>
-help

Action

Don’t actually execute commands (implies -v).
Specify object name of program.

Specify output name (default *.0 or "a.out")
Compile code for profiling.

Enable compiler debugging features.

Specify stack size of program.

Compile code for tracing.

Verify command being executed.

Suppress warnings.

Pass <flag> direct to linker.

Do not link with any libraries. Do not perform
objed.

Perform array bound checking (F77).

#define <name> (C)

#define <name> to be <val> (default <val> is
1) (C).

Enable compiler features (‘s’ turns off stack
checking and ‘g’ suppresses insertion of function
names in code) (C).

Specify a directory to be searched for #include
files.

Link with standard library <name >
(/helios/lib/ <name >.def).

Produce map file <name> (F77).

Optimise code; perform full link.

Produce textual assembler output in *.s; don’t
link.

Pass on verbose flag to executed commands.
Specify Transputer type.

Specify warning level (F77).

Specify cross reference width (F77).

List this message.

Helios Version 1.1 Helios for the Sun

dlink

Purpose: To disable the given link. ‘
Format: dlink <subnet name> <link_number>

Description:

dlink disables the given link and sets it into dumb mode; for example:

dlink /net/clustera/04 1

3-26

Helios for the Sun Helios Version 1.1

elink

Purpose: To enable the given link.
Format: elink <subnet name> <link_number>

Description:

elink is the opposite to dlink: it enables the given link. This will set the link
into intelligent mode and attempt to enable it:

elink /net/clustera/04 1

3-27

Helios Version 1.1

Helios for the Sun

fg

Purpose: To bring a job to the foreground.

Format: fg/<job name>]

Description:

This shell command brings the specified job, job_name, to the foreground. If
no argument is supplied, fg uses the current job. The following character
sequences can be supplied as arguments, and have the meanings shown:

Job Name

%<job_number>
%%

T+

Yol

Description

The job with the specified job number.
The current job.

The current job.

The previous job.

3-28

Helios for the Sun Helios Version 1.1

kill

Purpose: To terminate the specified job.
Format: kil <job_name> | <processid>

Description:

This shell command is used to terminate the specified job; the job can be
identified by either its job name or its process identification number. The
following character sequences can be supplied as arguments, and have the
meanings shown:

Job Name Description

%<job_number> The job with job number job_number.
%% The current job.

Yo+ The current job.

%- The previous job.

3-29

Helios Version 1.1 Helios for the Sun

Ibpcat

Purpose: To echo load balancer packets.
Format: <component> [n]||| Ibpcat

Description:

Ibpeat is a simple utility that just echoes load balancer packets. It can be used
as a test worker-task which simply echoes all packets it is sent. For example,

controller [201]]] tbpcat

tests that the controller and load balancer are creating and routing packets
correctly.

3-30

Helios for the Sun Helios Version 1.1

Icontrol

Purpose: To convert stream mode to line mode.
Format: <component> Icontrol <> b ...
Description:

The lcontrol utility is a simple front end for the Helios load balancer. As
described in The Helios Operating System, Section 7.5, the load balancer uses
a specific packet protocol for all communication with a control process.
Because you can change the protocol of the streams that connect the load
balancer to the worker tasks into line mode, so that you can use standard text
processing utilities as worker processes, you need to be able to convert a
stream in line mode to a packet stream for input to the load balancer;
Icontrol enables you to do this. So, to create a distributed concatenator, you
could give:

cat <filename> | Lcontrol [41]]|] mycat

In this example, lcontrol is used only to set the load balancer into line mode
and to pass on the lines output by the controlling cat.

331

Helios Version 1.1 Helios for the Sun

map

Purpose: To display activity in a Helios node.
Format: map

Description:

The map command displays a help page, listing valid commands and a
summary of the map format. Each of these commands is selected by a single
key press, as shown below:

Key Action

qQESC Terminate map.

hH Display help page.

- Halve sample rate.

+ Double sample rate. ‘
any other key Resize display and redraw.

The map consists of four fields. The top row displays the total amount of
memory which has been allocated, the amount which is free, and the number
of bytes which each character in the map represents. Along the right hand
side of the display is a table showing a list of active tasks and a letter which
has been assigned to that task; these letters are then used in the main map to
represent each of the tasks. The main map occupies the centre of the screen;
this shows the allocation of system heap. Each character in the map
represents a number of bytes which is specified in the top row of the display.
Character positions which are occupied by ‘.’ represent free memory, ‘#’
represents memory which has been allocated to the system, and ‘@ and ‘?
are usced to represent unidentified allocations. All letters which appear in the
map show the amount of memory which has been allocated to a task, and
digits represent shared libraries. At the bottom of the display is a graph
showing the current processor load; the horizontal bar at the end of the
graph marks the maximum load, and ‘=" shows the current loading.

3-32

Helios for the Sun Helios Version 1.1

netversn

Purpose: To provide licencing details for the given Network Server.
Format: netversn <subnet_name>

Description:

netversn gives licencing information about the Network Server specified as
subnet_name. It displays the information about the type of licence which was
issued (Single Machine or Network), the distributor’s identification code, and
the server’s serial number.

3-33

Helios Version 1.1 Helios for the Sun

reset

Purpose: To reset the given subnetwork. ‘
Format: reset <subnet_name>

Description:

reset resets the given subnetwork. The main restriction to the application of
the reset command is that it must not be used to reset the whole subnetwork,
as this would destroy the root Network Server and put the network into an
unrecoverable state. If you wish to reset the whole network, you should
re-boot Helios.

Helios for the Sun Helios Version 1.1

run

Purpose: To run a command in its own window.
Format: run <command>

Description:

The run command creates a window, executes the specified command, and
closes the window when the command terminates. The specified command is
located by the path environment variable.

335

Helios Version 1.1 Helios for the Sun

runb

Purpose: To submit a job description to the Batch Server.
Format: runb <file>

Description:

The runb command submits the specified job description file, file, to the
Batch Server, and then returns to the caller. A full description of the file’s
syntax is given in Section 3.3, "Batch Server".

3-36

Helios for the Sun Helios Version 1.1

startns

Purpose: To start a local Network Server.
Format: startns [options] <subnet_name>

Description:

startns is used to startup a local Network Server. This command can be
entered into the shell, or used in the startup file, initrc. The options are
passed to the Network Server and are as shown below:

Option Action

-1 Reset everything.

-nr No reset; on booting, do not attempt automatic reset.
-nt Do not create Task Force Manager for this network.
-nb Do not boot this network.

The above options may also be combined; for example, -nmt specifies that
the network is not to be reset and that no Task Force Manager is to be
created (a Task Force Manager is created by default).

3-37

Helios Version 1.1 Helios for the Sun

tcp

Purpose: To copy files, converting CR/LF to LF. ‘

Format: tcp <filename> <filename>
tcp <filename> [<filename>] ... <dir>

Description:

tep copies one or more text files. It is similar to cp, except that when tcp
copies a file it also translates CR/LF to LF (that is, carriage return/linefeed
to linefeed). This translation is necessary when you copy text files from an
external filing system such as MS-DOS, which stores end of line as CR/LF,
into an internal filing system such as the Helios filing system or RAM disc,
which uses just LF. See The Helios Operating System manual for details on
xlatecr.

Helios for the Sun Helios Version 1.1

3.8 Network Support

In order to run networked Helios, you will need to have two different copies
of Helios booted from two separate hosts. Each host should be responsible
for one subnetwork; at the minimum this means one transputer each. The
resource maps used in both machines must correspond to the subnetwork to
be booted by the Network Server in that subnetwork and must be given a
unique subnet name. Any program requested to be run by the TFM within
either subnetwork will not use any processor in the other subnetwork.

Each subnet description must describe any external links; these are the links
which are used to cross connect the two subnetworks. External links are
identified by number, normally starting at 0. The syntax used is that, instead
of specifying a terminal component name such as ~01, you must specify
ext/n] where n is the external link number. Each end of the external link
must be defined, one end in each subnetwork. An example should help clarify
this.

subnet /ClusterA {
CONTROL Rst_Anl [/ClusterA/00];
terminal 00 (~10, ext[0] , ,;
HELIOS;
Mnode Rst_Anl [im_ra_b4.d];
ptype T414;)
terminal 10 { ; 10;)
)

Here the first subnet ClusterA has one transputer. Link 1 is designated the
initial external link. This resource map is compiled and a Network Server
started in order to boot this and run the associated TFM. In this case, the
Network Server should be started by startns; for example,

startns /helios/etc/ClusterA.map

The following example defines the map for ClusterB, which shows the
external link connected to link 3 of the single transputer in this subnet. The
other copy of Helios should be booted and run with the map provided for the
Network Server and TFM. Once again, the Network Server should be started
by startns.

3-39

Helios Version 1.1 Helios for the Sun

subnet /ClusterB (
CONTROL Rst_Anl [/ClusterB/00];
terminal 00 ¢ ~10, , , ext[0];
HELIOS;
Mnode Rst_Anlt [im_ra_b4.dl;
ptype T414;)
terminal 10 { ; 10;)
)

In order to cause the network to become connected, a further version of the
Network Server must be run in one transputer somewhere on the network.
This must be started by startnet; the optional flags, -nt, should be used if
users do not wish to share processors. This network-wide Network Server
must be provided with a network map, which identifies the ways in which the
subnetworks are interconnected via the external links. In our simple example,
the map to be used would look as follows:

subnet /Net {
subnet ClusterA { /Net/ClusterB; HELIOS;)
subnet ClusterB { /Net/ClusterA; HELIOS;)
)

The initial external link is used as the first item in the external connection
list. Any further external links could be added as subsequent items, with each
item in the list separated by a comma. The subnetwork addresses in the link
definitions must include the full pathname of the target subnetwork; ‘~’ is
not valid at this level.

3.8.1 Control System

The network control system is provided by a distributed Helios server called
the Network Server (NS). This service is responsible for booting the network
and for its subsequent control. The network must first be defined by the use
of a text file called a resource map; the format of which is described in The
Helios Operating System (Prentice Hall, 1989). The resource map is read by
the NS at system boot time and is used to boot the defined network. Once the
network is booted, the NS automatically installs the Task Force Manager
hierarchy which enables the automatic allocation of programs (task forces) to
processors.

The network control commands provide a simple command line interface to
a resident library called the Network Control Library (net ctrl). This is a
library of routines which send requests direct to the relevant NS to perform
the control functions. For example, the processor /net/machine1/04 can be

3-40

Helios for the Sun Helios Version 1.1

reset by the following command line:

reset /net/machine1/04

Assuming that your hardware supports individual reset, the reset command
calls the function Reset() in net_ctrl, which sends a reset request to the
Network Server responsible for this processor (/net/machine1/ns). Similarly,
it is possible to reset a whole subnetwork. For example,

reset /net/machinetl

will, if possible, reset all the processors in subnetwork /net/machinel.

3.8.2 Network Commands

This section describes the set of network control commands distributed with
the network toolkit. These commands are exclusive to the networking Helios
system and provide a command line interface to the network control system.

3-41

Helios Version 1.1 Helios for the Sun

r e

clnames

Purpose: To clear all the name tables in a subnetwork.
Format: cinames <subnet_name>

Description:

clnames clears all the name tables in the given subnetwork. Helios provides a
distributed name service, with each processor maintaining its own table of
object addresses (see The Helios Operating System, Section 15.2). It is
desirable to flush these name tables under certain circumstances in order to
force a new search for a given object. Entries in the name table for objects
local to the processor (for example, a local server) are not removed.

Example:

clnames /net/clustera
clnames /net/clustera/04

3-42

Helios for the Sun Helios Version 1.1

connect

Purpose: To connect two subnetworks.
Format: connect <subnet A_name> <subnet B name>

Description:

connect connects two subnetworks. It must be possible to access the Network
Server (NS) responsible for <subnet A_name> from the processor on which
this request is issued. So the request

connect /net/clustera /net/clusterb

will not succeed if initiated from- subnetwork /net/clusterb, but the following
should work:

connect /net/clusterb /net/clustera

3-43

Helios Version 1.1 Helios for the Sun

cupdate

Purpose: To update a network context.
Format: cupdate <subnet name>

Description:

cupdate updates the network context of the given network. This command is
used to update a partial network context to the full network context, and may
be used when re-connecting errant subnetworks. For example,

cupdate /clustera /net/clustera

will update the network address (context) of every processor in the subnet
clustera, and update the context of the required Network Servers and Task
Force Managers.

3-44

Helios for the Sun Helios Version 1.1

dconnect

Purpose: To disconnect two subnetworks.
Format: dconnect <subnet A_name> <subnet_B_name>

Description:

dconnect disconnects two subnetworks. For example:

dconnect /net/clustera /net/clusterb

Helios Version 1.1 Helios for the Sun

Irecon

Purpose: To reconfigure local processor link status.

Format: irecon :
<link0_mode> <linkl_mode> <link2_mode> <link3_mode>

Description:

The Irecon utility does not use the network control library at all. It calls the
kernel directly to change the state of the local processor links, using the
kernel Reconfigure. It is useful for changing link modes from the command
line. For example,

lrecon 2112
will disable links 1 and 2.

Note: <link_mode> = 1 or 2 (dumb or intelligent).

Helios for the Sun Helios Version 1.1

Istatus

Purpose: To return the status of a network link.
Format: istatus <subnet name> <link_number>

Description:

Istatus returns the status of the given network link. The status is returned in
the format of the LinkConf structure (see link.h and config.h). The State and
Mode are most useful as these define the current status of the link. For
example,

lstatus /net/clustera/04 0

will return the status of this physical link.

3-47

Helios Version 1.1 Helios for the Sun

native

Purpose: To return a subnetwork to the native state. ‘
Format: native <subnet name>

Description:

native reverts the given subnetwork to the native state. This involves
terminating the network control servers (NS and TFM) in this subnetwork
and resetting the member processors. It is not possible to revert the whole
network to native in this way (see boot). This will also disable any links which
disconnect this subnetwork (that is, any links which connect this subnetwork
to the still active outside world). For example:

native /net/clustera

Warning: native should be used with care as it will kill any programs running
in the target subnetwork. It does not currently terminate user programs.

3-48

Helios for the Sun Helios Version 1.1

sfnc

Purpose: To update the system function entry in the NS and TFM
database.

Format: sfnc <subnet name> <system_function>

Description:

The sfoc command updates the system function entry in the distributed
database of the NS and TFM. The system function defines what a
subnetwork may be used for. Only processors with the function HELIOS will
be considered for running user programs. If you wish to prohibit further
placement of programs in a particular processor, you can invoke this
command with the SYSTEM function:

Option Description
NATIVE =1 (You should use the native command not this
option)

HELIOS =2 This is a HELIOS subnetwork; can load user
programs

I0=3 This is an IO Subnetwork

SYSTEM = 4 This is a SYSTEM subnetwork; cannot load user
programs

Example:

sfnc /net/clustera/03 4

Helios Version 1.1 Helios for the Sun

smemory

Purpose: To update the memory entry in the NS and TFM database. C
Format: smemory <subnet_name> <memory size>

Description:

The smemory command updates the memory entry in the distributed
database of the NS and TFM. The memory field defines the total amount of
memory available in the given subnetwork, <subnet name>, (that is,
<memory_size> = new memory size for the subnetwork in bytes), and is
used in the mapping of task forces, where memory requirements have been
specified in the CDL definition. For example:

smemory /net/clustera 2000000

Helios for the Sun, Helios Version 1.1

sptype

Purpose: To update the processor types in the NS and TFM database.

Format: spoype <subnet_name> <processor_type>
<number_processors >

Description:

The sptype command updates the processor types entry in the distributed
database of the NS and TFM. The processor types field defines the total
number of processors of each type in the given subnetwork.

Note: <processor type> = 2 or 3 or 4 (T414, T800 or 68000);
<number_processors> = number of processors of given type.

3-51

Helios Version 1.1

Helios for the Sun

sstatus

Purpose: To return the Network Server status for a subnetwork.

Format: sstatus <subnet name>

Description:

sstatus returns the internal NS state for the given subnetwork; it is really only
of any use when trying to determine why a subnetwork has not been booted.
Valid Network Server states include:

State

ACTIVE =1

PENDING = 2

UNKNOWN = 8

UPDATE = 16

Description
The subnetwork is active (fully booted)

The subnetwork is changing to ACTIVE (partially
booted)

State unknown (still trying to determine state)

The NS is updating its database

3-52

Helios for the Sun Helios Version 1.1

startnet

Purpose: To start up a network-wide Network Server.
Format: startnet [options] <map_name>

Description:

The startnet command starts up a network-wide Network Server. It should
be used after startns has been used to start up the local Network Servers.
Valid options for the Network Server are as follows:

Option Action

-r Reset everything.

-nr Do not attempt automatic reset on booting (set by
default).

-nt Do not create Task Force Manager for this
network.

-nb Do not boot this network.

The above arguments may also be combined; for example, -nm¢ specifies that
the network is not to be reset and that no TFM is to be created.

By specifying the option nt, you can share the available processors with other
users. In general, this is inadvisable as there is currently nothing to stop a
user from resetting another user’s processor.

Helios Version 1.1 Helios for the Sun

3.9 The Session Manager

The Session Manager (SM) is a system service responsible for creating user
sessions and for restricting the total number of active sessions in a Helios
system. It reads in the standard Helios password file, efc/passwd, and
generates an internal database of users, /sm/userdata. The list of potential
users can thus be read from the SM by opening the directory /sm/userdata
and then reading it. Although the SM does not currently support the reading
of the userdata entries themselves, future versions will allow this.

The SM services requests to create a session. When the SM is requested to
create a session it expects to be given an initialised SessionInfo data structure
which identifies the user. Having validated the user name and password, the
SM creates a session entry and returns the created session; this represents a
single user’s initialised session data. Several Open requests may then be
made to create session environments, each one generating a RequestEnv
request to produce the environment. The resulting environment, which is
created for each session, includes the root program name (usually a shell),
the user’s home directory, the user’s console and keyboard streams, and
other attributes. A record of each active session is maintained in the directory
/sm/users. A list of the users who are currently logged into the Helios
network can then be obtained by listing the contents of this directory.

The interface to the SM is usually provided by a login worker process called
smlogin. This is equivalent to the basic login program but it uses the SM to
verify the username and password and to create the login shell environment
as described above.

The password file may be updated to change the parameters or the number
of valid users. In the present implementation it is not possible for users to
change their own passwords; to do this, the system administrator must
change the password file directly.

UserName:Passwd:GID:UID:Comment :HomeD i rectory:RootProgram [args]

GID = Group 1d
UID = User Id

Comment = a text comment (usually full name of user)
HomeDirectory = the users home directory

RootProgram = the root program (usually /helios/bin/shell)

3-54

Helios for the Sun Helios Version 1.1

The smlogin utility is a login service. It displays the login prompt, creates a
session (within the Session Manager), and sets up a login shell. When the
login shell is exited, smlogin will re-display the login prompt to allow another
user to log in. smlogin will also allow a user to log in through a remote

' console if it is provided with the stream which will be opened for the login
console. For example, to log in through a remote Window Server, you could
type something like this:

smlogin -d /fred/00/window/tty2 &
which would create a login worker for the stream /fred/00/window/ity2.

3.10 New Functions

The following functions have been added in to Helios 1.1:

word *InitProcess(word *stack, VoidFnPtr entry, VoidFnPtr exit, word *display,
word nargs);
InitProcess initialises a process for execution. Stack points to the top
‘ of the memory to be used as the stack, entry is the code to be
executed in the process and exit the return address for when this
returns. Display points to the initialised display passed to the initial
call. Nargs is the number of bytes of arguments to be passed in. The
stack is initialised according to the standard calling conventions and
a pointer returned to the space left for the arguments.

void StartProcess(word *p, word pri);
StartProcess starts a process initialised by InitProcess at the given

priority.

void StopFrocess(void);
StopProcess halts the current process.

word GetPortInfo(Port port, PortInfo *info);
GetPortInfo fills the provided PortInfo structure with information

‘ about the port.

3-55

Helios Version 1.1 Helios for the Sun

void FreeMemStop(void *mem);
FreeMemStop frees the memory block and halts the current process.
This function is used to allow the stack on which the current process
is executing to be released without it being re-allocated before the
process has a chance to stop itself.

void SignalStop(Semaphore *sem);
SignalStop signals the semaphore and halts the current process.
Like FreeMemStop, this function is used to prevent problems in
memory allocation.

word Configure(LinkConf newconf);
This function is used to re-configure a single processor link.
Configure() should be used instead of Reconfigure().

Stream *PseudoStream(Object *object, word mode);
PseudoStream manufactures a stream of Type Pseudo to the given
object. Unlike normal streams this will not be opened. It may be
used wherever a normal stream can be used, and will be opened
automatically if necessary.

3.11 Changed Functions

The following function, which exists in Helios 1.0, has changed in
specification in Helios 1.1:

PUBLIC word GetEnv(Port port, Environ *env);
The Port argument has been added to GetEnv, to allow
environments to be passed to any port.

3-56

Helios for the Sun Helios Version 1.1

3.12 Extended Functions

The specification of the following function has been extended in Helios 1.1:

void *Malloc(word size);
if size = -3 result is total size of heap.

3-57

~*3.16

~* constructor 3.15

| constructor 3.15, 3.16

| || constructor 3.15
<314

<> constructor 3.15, 3.17
~ (tilde) 34

13.7

137
#16,25,3.7
0x 3.7
%3.1,3.15
%] (termcap) 2.6
@7 (termcap) 2.6
&8 (termcap) 2.6
& 31,32
/alias - see also Alias Server 3.2
/bin 1.2 - see also /helios/bin
/etc 1.2 - see also /helios/etc
/etc/hosts 1.5
Jetc/services 1.5

- see also System configuration file
/fifo 38
/files 2.7
/helios 2.7
/helios/etc 2.8
/helios/etc/initrc 2.8
/helios/lib 1.6
/helios/lib/init 1.6
/helios/lib/window 2.2
/include 1.2
/lib 1.2 - see also /helios/lib
[logger 1.6,1.7,28,2.9

Index

auto 1.6
Automatic allocation of streams 3.16
Auxiliary
- list stream allocation 3.18
- streams 3.18
Available memory 3.50

Batch Server 1.6, 1.8, 3.3, 3.6,
3.36 - see also runb

Bell sequence 2.7

bin 3.12

bl (termcap) 2.7

boot 3.22, 3.23, 3.48

Boot (debugging option) 2.3

Booting - see also boot
large subnetworks 3.23
network 3.39
processors 1.4
subnetworks 3.23, 3.52

bootlink 2.14

BootLink() 3.8

Bootstrap 2.13

Busy system 2.12

€3.22,3.24,3.25
C compiler optimisation 3.8, 3.9
Clibrary 3.8
CDL 35,3.9-3.22,3.50
- code (component attribute) 3.9
- compilation errors 3.19
- compiler 3.10, 3.12, 3.19
- new syntax 3.21, 3.22
- scripts 3.19, 3.20

1

Index

ce (termcap) 2.7
cl (termcap) 2.7
Clear screen 2.7
Clear to end of line 2.7
clnames 3.42
Close (debugging option) 2.3
cm (termcap) 2.7
co (termcap) 2.7
code (component attribute) 3.9
- see also CDL
Command name subscript
expressions 3.15
Commands, running - see run
Comments 1.6
Communication between processes 3.8
Compiler driver - see ¢
Compiling and linking a program
-seec
Component Distribution Language
-see CDL
Component attributes 3.9
- see also CDL
Component declaration - see CDL
Configuration file 1.3, 14, 1.5,
17,21,22,24,25,2.13,
2.14,2.15
- see also host.con, hydra.con
- re-read (<hot key>-z) 2.5
- re-read - see Reconfigure
- specify - see server
Configuraton, network 1.5
Configure 3.56
connect 3.43
Connecting subnetworks - see connect
Connection problems 2.12
console 1.6, 1.7
Console window 1.7
Constructor(s) 3.11-3.18
- see also CDL
-<>317
-*316
-13.16
- farm 3.12
- interleave 3.12, 3.13,3.14
- pipe 3.18
- precedence 3.15, 3.16, 3.17
- subordinate 3.18
Context update, network - see cupdate
Converting stream mode to line mode
- see Icontrol
copy 3.0
Copying files 3.38
- see also cp, tcp
CR/LF to LF translation 3.38
- see also tcp

Crashing the transputer 2.13
Creating a new session 3.54
CTRL-G - see Bell sequence

cupdate 3.44
Current process, stopping 3.55, 3.56 ‘
Current window refresh (<hot key>-3) 2.5

Cursor move 2.7

dconnect 3.45
Debugger 2.2-2.5

- enter (<hot key>-7) 2.5
debugger_key (function key kS) 2.5
Debugging 2.2-25

- facilities menu 2.2, 2.3

- options 2.3, 2.5

- resources (<hot key>-x) 2.5

- window 2.2
Device servers, progress report

while starting - see Init
Directory structure mapping 3.2
Disable link 3.26, 3.46, 3.48

- see also dlink
Disconnecting a server 2.12
Disconnecting subnetworks

- see dconnect

Display Helios node activity ‘

- see map
Distributed searches, report
- see Search
dlink 3.22, 3.26
Down-arrow key 2.6
Dumb mode links 3.26
Dumb terminals 2.4, 2.15

Echo load balancer packets
- see Ibpcat
elink 3.22, 3.27
Enable link 3.27
- see also elink
End key 2.6
Enter debugger (<hot key>-7) 2.5
Environment - pass to port 3.56
Environment of job 3.5
Error
- codes 3.6
- log 2.8, 2.9 - see also /logger
- logger 1.7, 2.2, 2.4, 2.5,

28,29
- messages from the Server 2.4 .
- output destinaton 2.8, 2.9

- see also /logger
Escape keys 2.5
Escape sequences 2.6
etc/batchre 1.6, 1.8
etc/initrc 1.6

i

Index

Ethernet 2.9, 2.10

Executable task force, specify 3.5
exit_key (function key k7) 2.5
Exit Server (<hot key>-9) 2.5
External links 3.39, 2.40

Farm constructor 3.12
- see also Interleave constructor
Fault 3.6
- codes 3.6
- database 3.6, 3.7
- database, private 3.7
Fault library 3.6
Fault() 3.6
fdbclose 3.6, 3.7
fdbfind 3.6, 3.7
fdbopen 3.6, 3.7
fdbrewind 3.6, 3.7
fg3.1,3.22,3.28
Fifos 2.8, 3.8
File(s)
- being closed, list - see Close
- being opened, list - see Open
- copying 3.38 - see also cp, tcp
- descriptors 3.18
- reads, report - sce Read
- writes, report all - see Write
Filing system interface 2.7
filter 3.11
Floating point 3.9
font13.0
Foreground job - see fg
FreeMemStop 3.56
Freeing memory blocks 3.56
Function
- code format 3.8
- key operations 2.5, 2.6

GetEnv 356

gethostbyname() 2.11

GetPortInfo 3.55

getservbyname() 2.11

Give names of objects being accessed
- see Name

Graphics (debugging option) 2.3

Graphics operations, report any
- see Graphics

Halting the current process 3.55, 3.56
helios 1.1,1.2,1.3

- directory/ies 1.2,1.3

- helios/bin 1.2

- helios/etc 1.2, 1.5

- helios/etc/initre 1.4

- helios/include 1.2

- helios/lib 1.2
- helios/tmp 1.2
Helios 1.1, new commands in 3.22
Helios directory/ies - see helios
Helios node, display activity in
- see map
Help key 2.6
Home key 2.6
host.con 1.3-15,2.1,2.2, 24,
25,27,29-2.15
- example file 2.15
- see also Configuration file
Hot keys 2.1,2.4,25,26,28
Hydra link daemon 1.2, 1.3, 1.5, 2.10,
2.11,212213,215
- overloading 2.13
- recovery 2.13
hydra.con 15, 2.12, 2.13
- see also Configuration file
hydramon 1.2, 1.5, 2.12

ifabsent 1.6
io_processor 2.14
I/O Server 1.1,1.2,1.3,1.6, 1.7,
2.1-2.15
- special key sequences 2.4
- window 2.4
- processor 1.6, 2.14
- processor connection 2.14
ITFTP32 2.10
init 1.7
Init (debugging option) 2.3
InitProcess 3.55
Initialisation file
(/helios/etc/initre) 2.8
Initialised process, starting an 3.55
Initialising a process 3.55
initrc 1.6
Insert key 2.6
Installation 1.1-1.8, 2.11, 2.12
- administration 2.11, 2.12
Intelligent mode links 3.27
Inter-task communication 3.8
Interieave constructor(s) 3.12, 3.13,
3.14
Intemet 1.5, 2.11
internet 2.13
Inverse video 2.7
Iteration names 3.14, 3.15

jobs 3.1

Job(s) 3.1,3.2,3.3,35,3.6
- see also fg, jobs, Task force
- bring into foreground 3.28
- control 3.1, 3.2

iii

Index

- creation 3.6

- description file 1.8, 3.6, 3.36
- see also etc/batchre

- environment 3.5

- list 3.1,3.2

- numbers 3.1

- objects, specifying 3.5

- priority 3.4

- remote execution 3.3

- repeat delay 3.4

- rescheduling 3.4

- start time 3.3, 34

- status 3.4

- terminate - see kill

k1-k9 (termcap) 2.6

k; (termcap) 2.6

kd (termcap) 2.6

Kernel 3.8, 3.46

Key presses, report all - see Keyboard
Key translation 2.6 - see also Termcap
Keyboard (debugging option) 2.3

kh (termcap) 2.6

kI (termcap) 2.6

kill 3.1, 3.22, 3.29

Killing programs 3.48 - see also kill

k! (termcap) 2.6

kN (termcap) 2.6

kP (termcap) 2.6

kr (termcap) 2.6

ku (termcap) 2.6

Large subnetworks, booting 3.23
b 3.12
Ibpeat 3.22, 3.30
Icontrol 3.22, 3.31
Left-arrow key 2.6
Licencing 3.33
Link .
- adapter 2.9, 2.15
- multiple 2.9
- daemon - see Hydra
- definitions 3.40
- disable 3.26 - see also dlink
- dumb mode 3.26
- enable 3.27 - see also elink
- intelligent mode 3.27
- modes, changing 3.46
- non-blocking mode 2.13
- status 3.47
LinkConf 347
Linking a program - see ¢
Links, reconfiguring 3.46
List files being closed - see Close
List files being opened - see Open

Listing open streams - see Resources

Load balancer/ing 3.12, 3.30, 3.31-
- packet protocol 3.31
- packets, echo - see Ibpcat
- see also Ib 3.12

Loading server 1.7

Local Network Server 3.37, 354
- start - sce startns

Local processor links, reconfigure
- see Irecon

Locking sites 2.13

Logfile 2.9

logfile 2.9

Logger device 2.8

login 1.6

Login 3.54

Low level routines 3.7

irecon 3.46

Istatus 3.47

Main Helios directory location,
specifying the 2.7
Malloc 3.57
map 3.22, 3.32
Mapping directory structure 3.2
Master/slave 3.18
me (termcap) 2.7
Memory
- allocation 3.56
- available 2.14, 3.50
- blocks, free 3.56
- specifying the amount of 2.14
message_limit 2.14
Messages
- (debugging option) 2.3
- maximum size of 2.14
- passing 3.8
Monitoring program - see hydramon
mr (termcap) 2.7
mul 3.8
Multi-dimensioned replication 3.13
Multiple
- copies of Helios 2.8
- link adapter 2.9
- links 2.9
-users 2.9, 2.12, 2.13
-windows 2.1, 2.2

Name 2.3
- (debugging option) 2.3
- table 3.8, 3.42
- clear - see clnames
Name Server 1.6, 1.7
native 3.48, 3.49
Native state - see native

iv

Index

net_ctrl 3.40, 3.41
- see also Network control library
netversn 3.22, 3.33
Network 2.14
- address (context) 2.13, 3.44
- booting 3.39, 3.40
- commands 341
- configuration 1.5
- context update - see cupdate
- control 3.40, 341, 3.46, 348,
3.49,3.50
- see also Network Server, TFM
- library 3.40, 341, 3.46
- servers, terminating 3.48
- system 3.40, 341
- licence - see also netversn 3.33
- link status 3.47 - see also Istatus
- map(s) 2.8, 3.40
- messages, report on - see Messages
- resetting the 3.34
Network Server 1.4, 3.23, 3.39,
3.40,343,3.44,348
- see also NS
- licence 3.33
- start - see startnet, startns
- status - sce sstatus
Networked Helios 3.39
Networking 1.3, 1.4
New Helios functions 3.55
New commands in Helios 1.1 3.22
New connection problems 2.12
Next window, switch to
(<hot key>-1) 2.5
Node activity, display - see map
Non-blocking mode 2.13
Normal video 2.7
NS 3.40, 3.43, 3.48, 3.49, 3.50,
351,352
- see also Network Server
- distributed database 3.49,
3.50, 3.51

Object address tables
- see Name tables
Objects being accessed, give
names of - see Name
Objects passed in job environment,
specify 3.5
Open 3.54
- (debugging option) 2.3
- files 3.8
- streams 2.3, 3.5, 3.9
- see also Resources
Overloading Hydra 2.13

PageDown key 2.6
PageUp key 2.6
Parallel constructor ** 3.16
Password file 3.54
pipe 3.11
Pipe(s) 3.8, 3.11, 3.12, 3.13
- constructor | 3.16, 3.18
Pipe Server 3.8 - see also /pipe
Port
- information 3.55
- passing an environment to 3.56
- table garbage collector 3.8
Porting
- makefiles 3.2
- shell scripts 3.2 -
Precedence of constructors 3.15
Previous window, switch to
(<hot key>-2) 2.5
Priority of jobs 3.4
Private fault database 3.7
Process
- identification 3.1
- initialisation 3.55
- starting a 3.55
- stopping 3.56
Processing initialisation 3.55
Processor(s)
- manager - see Processor Manager
- names 2.14
- performance monitor 3.8
- type 351
- sharing 3.40, 3.53
Processor Manager 3.8
prod 3.8
Program scheduling 3.3
Program to processor allocation 3.40
Programs, remote execution of 3.3
Progress report(s) 2.3
- during transputer bootstrap
- see Boot
- while Server is exiting
- see Quit
- while device servers are
starting - see Init
Protocol 2.12
Pseudo windows 2.1
PseudoStream 3.56

Quit (debugging option) 2.3

Read (debugging option) 2.3

Real windows 2.1, 2.2

Reboot transputer (<hot key>-0) 2.5
Rebooting 2.4

reboot_key (function key k8) 2.5

\{

Index

Reconfigure 2.3, 3.46, 3.56
- (debugging option) 2.3
- local processor links 3.46
- single processor link 3.56
Reconnecting subnetworks 3.44
Refresh current window
(<hot key>-3) 2.5
refresh_key (function key k4) 2.5
Remote
- access 1.5
- execution of programs 3.3
- login 3.55
Repeat delay, job 3.4
Repeating jobs 3.4
Replication 3.11, 3.13, 3.14
- limit 3.14
- multi-dimensioned 3.13, 3.14
Replicators 3.11
- see also CDL
Report all file reads - see Read
Report all file writes - see Write
Report all key presses
- see Keyboard
Report any graphics operations
- see Graphics
Report distributed searches
- see Search
Report on network messages
- see Messages
RequestEnv 3.54
Re-read configuration file 2.3, 2.5
- see also Reconfigure
Rescheduling jobs 3.4
reset 3.22, 3.34, 341
Reset driver - see tram_ra.d
Reset() 341
Resetting a subnetwork 3.34, 3.41
- see also reset
Resetting network processors 3.48
- see also native
Resetting the network 3.34
Resident libraries 3.40
Resizing windows 2.2
Resource
- debugging 2.3, 2.5
- map(s) 14, 3.39, 3.40
Right-arrow key 2.6
ro (termcap) 2.7
Root Network Server 3.34
root_processor 2.14
Root transputer 2.9
run 1.6, 1.7, 1.8, 3.2, 3.22, 335
runb 3.6, 3.22, 3.36
Running a command - see run

Screen operations, translating
escape sequences to 2.6
Screen size 2.2
se (termcap) 2.7
Search (debugging option) 2.3
server 1.3. 2.1, 2.3
Server 1.5, 2.1-2.15
- see also I/O Server
- configuration file 1.3
- disconnecting a 2.12
- exit (<hot key>-9) 2.5
- exiting, progress report while
- see Quit
-loading 1.7
- status (<hot key>-8) 2.5
serverwindow 1.2, 2.3
serverwindow.sun3 2.3
Session(s)
- active 3.54
- creation 3.54
- environment 3.54
- user 3.54
SessionInfo 3.54
Session Manager (SM) 3.54
sfnc 3.49
Sharing processors 3.40, 3.53
Shell 3.1,3.2,3.8
SignalStop 3.56
Single machine licence 3.33
- see also netversn
Site(s) 1.1, 1.2, 14,1.5,29,
2.10,2.11,2.13
- see also Transputer site
- access 1.1, 2.13
- administration 1.2, 2.11
- allocation 1.3,1.4, 1.5
- locking 2.13
- numbers 1.1
- release 2.12
- unused 1.5
SM 3.54 - see also Session Manager
smemory 3.50
smlogin 3.54, 3.55
so (termcap) 2.7
Socket(s) 2.8, 2.11, 2.12,2.13
- identifier 2.11
- internet 2.11, 2.13
- TCP/IP 2.10, 2.11
- Unix 2.11, 2.13
Special keys 2.2, 2.6
sptype 3.51
sstatus 3.52
Start(ing)
- Helios 1.6
- initialised process 3.55

vi

Index

- local Network Server - sce startns
- time, job 3.3, 3.4
startnet 3.40, 3.53
startns 1.8, 3.22, 3.37, 3.39, 3.53
StartProcess 3.55
Startup file 3.37
Startup options 1.6
status_key (function key k6) 2.5
Status
- job(s) 3.4
- Server (<hot key>-8) 2.5
StopProcess 3.55
Stopping the current process 3.55, 3.56
Stream(s)
- allocation 3.16, 3.18
- mode to line mode conversion
- see lcontrol
- passed as job environment,
specify 3.5
Subnetwork(s) - sec also Network(s)
- addresses 340
- booting 3.23, 3.52
- see also boot
- connection 343
- see also connect
- disconnection 3.45
- see also dconnect
- memory available in 3.50
- processor types 3.51
- reconnecting 3.44
- resetting 3.34, 3.41
- see aiso reset
Subordinate constructor < > 3.17, 3.18
Subscript expressions 3.18, 3.19
Subscripted component declarations 3.10
- see also CDL
Sun-31.1,12,23,2.12
Sun-4 1.1,1.2,2.3, 2.12
sunbin 1.1, 1.2
Sun 1/O Server 2.1,2.2
SunOS 1.1
SunView 2.1, 2.2, 2.8
switch_backwards_key
(function key k3) 2.5
switch_forwards_key
(function key k2) 2.5
Switch error logger destination
(<hot key>-1) 2.5, 2.8
Switch to next window
(<hot key>-1) 2.5
Switch to previous window
(<hot key>-2) 25
Symbolic links 2.8
System
- administration 2.13, 3.54

- configuration file 1.5
- function 3.49

- library 3.8

- services 3.5

Task force 3.3, 35, 3.10, 3.11, 3.16
3.19, 3.20, 3.40
- see also Job
- allocation 3.40
- configuration 3.16
- definition 3.10, 3.11, 3.19, 3.20
- executable 3.5
- object 3.5
- stream allocation 3.16
- use of streams 3.19
Task Force Manager 3.40, 3.44
- sec also TFM
tcp 1.5,3.22,3.38
TCP/IP socket 2.10, 2.11
TDS 2.9
TERM environment variable 2.4
Termcap 2.4-2.7
- database 2.4
- entries 2.6, 2.7
- names 2.4
- sequence translation 2.6
Terminal
- input, dumb 2.4
- keys 2.6 - see also Termcap
- size 2.7
- wrapping characteristics 2.7
Terminate job - see kill 3.29
Text files, copying 3.38
- see also cp, tcp 3.38
TFM 338, 3.39, 3.40, 3.44, 348,
3.50,3.51
- see also Task Force Manager
- distributed database 3.49,
350,351
Tilde (~) 28,34
Timeout errors 3.23
Toggle all debugging options
(<hot key>-a) 2.5
tram_ra.d (Reset driver) 1.4
Transputer bootstrap, progress
report during - see Boot
transputer_memory 2.14
Transputer site 1.1
- allocation 1.3

Undo key 2.6

Unix 2.1,2.2,24,2.7, 29,
211,213,214
- filing system, accessing
the 2.7, 2.8

vii

Index

Unused sites 1.5

Up-arrow key 2.6

Updating a network context
- see cupdate

usadata - see User database

User changes to configuration 2.14
- see also host.con

User database 3.54

User sessions 3.54

Users, list 3.54

waitfor 1.7
Waiting for the server to be

loaded - see waitfor
Window(s) 2.1-2.4,3.35

- creation 2.2, 2.3

- debugging 2.2

- interface 2.1

- 1/O Server 2.4

- multiple 2.1, 2.2

- operations 2.2

- pseudo 2.1

-real 2.1,2.2

- resizing 2.2

- switching 2.4
Window Manager 1.7
Window Server 1.7, 3.55
Workload balance

- see Load balancing
Write (debugging option) 2.3

viii DM5021

