
MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 1-1

Chapter 1
MOTOROLA DSP ASSEMBLER

1.1 INTRODUCTION

The Motorola DSP Assemblers are programs that process assembly language source
statements written for Motorola’s family of digital signal processors. The Assembler trans-
lates these source statements into object programs compatible with other Motorola DSP
software and hardware products.

1.2 ASSEMBLY LANGUAGE

The assembly language provides mnemonic operation codes for all machine instructions
in the digital signal processor instruction set. In addition, the assembly language contains
mnemonic directives which specify auxiliary actions to be performed by the Assembler.
These directives are not always translated into machine language. The assembly lan-
guage enables the programmer to define and use macro instructions which replace a sin-
gle statement with a predefined sequence of statements found in the macro definition.
Conditional assembly also is supported.

1.3 INSTALLING THE ASSEMBLER

The Assembler is distributed on various media and in different formats depending on the
host environment. See Appendix G, Host-dependent Information, for details on installing
and operating the Assembler on your particular machine.

1.4 RUNNING THE ASSEMBLER

The general format of the command line to invoke the Assembler is:

DSPASM [options] <filenames>

where:

DSPASM

The name of the Motorola DSP Assembler program appropriate for the tar-
get processor (see Appendix F, Device-dependent Information). For exam-

Motorola DSP Assembler
Running The Assembler

1-2 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

ple, for the Motorola DSP56000 processor the name of the Assembler
executable is ASM56000.

[options]

Any of the following command line options. These can be in any order, but
must precede the list of source filenames. Some options can be given more
than once; the individual descriptions indicate which options may be speci-
fied multiple times. Option letters can be in either upper or lower case.

Command options that are used regularly may be placed in the environment
variable DSPASMOPT. If the variable is found in the environment the As-
sembler adds the associated text to the existing command line prior to pro-
cessing any options. See your host documentation for instructions on how
to define environment variables.

Option arguments may immediately follow the option letter or may be sepa-
rated from the option letter by blanks or tabs. However, an ambiguity arises
if an option takes an optional argument. Consider the following command
line:

ASM56000 -B MAIN IO

In this example it is not clear whether the file MAIN is a source file or is
meant to be an argument to the -B option. If the ambiguity is not resolved
the Assembler will assume that MAIN is a source file and attempt to open it
for reading. This may not be what the programmer intended.

There are several ways to avoid this ambiguity. If MAIN is supposed to be
an argument to the -B option it can be placed immediately after the option
letter:

ASM56000 -BMAIN IO

If there are other options on the command line besides those that take op-
tional arguments the other options can be placed between the ambiguous
option and the list of source file names:

ASM56000 -B MAIN -V IO

An alternative is to use two successive hyphens to indicate the end of the
option list:

ASM56000 -B -- MAIN IO

In this latter case the Assembler interprets MAIN as a source file name and
uses the default naming conventions for the -B option.

Motorola DSP Assembler
Assembler Options

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 1-3

1.5 ASSEMBLER OPTIONS

-A

Indicates that the Assembler should run in absolute mode, generating an
absolute object file when the -B command line option is given. By default the
Assembler produces a relocatable object file that is subsequently pro-
cessed by the Motorola DSP linker. See Chapter 4, Software Project Man-
agement, for more information on Assembler modes.

-B[<objfil>]

This option specifies that an object file is to be created for Assembler output.
<objfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
object file should be sent to the standard output.

The type of object file produced depends on the Assembler operation mode.
If the -A option is supplied on the command line, the Assembler operates in
absolute mode and generates an absolute object (.CLD) file. If there is no
-A option on the command line, the Assembler operates in relative mode
and creates a relocatable object (.CLN) file.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the Assembler will use the basename (filename
without extension) of the first filename encountered in the source input file
list and append the appropriate file type (.CLN or .CLD) to the basename. If
the -B option is not specified, then the Assembler will not generate an object
file. The -B option should be specified only once. If the file named in the
-B option already exists, it will be overwritten.

Example: ASM56000 -B filter main.asm fft.asm fio.asm

In this example, the files MAIN.ASM, FFT.ASM, and FIO.ASM are
assembled together to produce the relocatable object file
FILTER.CLN.

-D<symbol> <string>

This is equivalent to a source statement of the form:

DEFINE <symbol> <string>

 <string> must be preceded by a blank and should be enclosed in single
quotes if it contains any embedded blanks. Note that if single quotes are
used they must be passed to the Assembler intact, e.g. some host com-
mand interpreters will strip single quotes from around arguments. The

Motorola DSP Assembler
Assembler Options

1-4 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

-D<symbol> <string> sequence can be repeated as often as desired. See
the DEFINE directive (Chapter 6) for more information.

Example: ASM96000 -D POINTS 16 prog.asm

All occurrences of the symbol POINTS in the program PROG.ASM
will be replaced by the string ‘16’.

-EA <errfil>
-EW <errfil>

These options allow the standard error output file to be reassigned on hosts
that do not support error output redirection from the command line. <errfil>
must be present as an argument, but can be any legal operating system file-
name, including an optional pathname.

The -EA option causes the standard error stream to be written to <errfil>; if
<errfil> exists, the output stream is appended to the end of the file. The -EW
option also writes the standard error stream to <errfil>; if <errfil> exists it is
rewound (truncated to zero), and the output stream is written from the be-
ginning of the file. Note that there must be white space separating either
option from the filename argument.

Example: ASM96000 -EWerrors prog.asm

Redirect the standard error output to the file ERRORS. If the file al-
ready exists, it will be overwritten.

-F<argfil>

Indicates that the Assembler should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and
filenames to be passed to the Assembler. The arguments in the file need be
separated only by some form of white space (blank, tab, newline). A semi-
colon (;) on a line following white space makes the rest of the line a com-
ment.

The -F option was introduced to circumvent the problem of limited line
lengths in some host system command interpreters. It may be used as often
as desired, including within the argument file itself. Command options may
also be supplied using the DSPASMOPT environment variable. See the dis-
cussion of DSPASMOPT under [options] at the beginning of this section.

Example: ASM96000 -Fopts.cmd

Invoke the Assembler and take command line options and source
filenames from the command file OPTS.CMD.

Motorola DSP Assembler
Assembler Options

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 1-5

-G

Send source file line number information to the object file. This option is val-
id only in conjunction with the -B command line option. The generated line
number information can be used by debuggers to provide source-level de-
bugging.

Example: ASM56000 -B -G myprog.asm

Assemble the file MYPROG.ASM and send source file line number
information to the resulting object file MYPROG.CLN.

-I<pathname>

When the Assembler encounters INCLUDE files, the current directory (or
the directory specified in the INCLUDE directive) is first searched for the file.
If it is not found and the -I option is specified, the Assembler prefixes the file-
name (and optional pathname) specified in the INCLUDE directive with
<pathname> and searches the newly formed directory pathname for the file.

The pathname must be a legal operating system pathname. The -I option
may be repeated as many times as desired. The directories will be
searched in the order specified on the command line.

Example: ASM56000 -I\project\ testprog

This example uses IBM PC pathname conventions, and would cause
the Assembler to prefix any INCLUDE files not found in the current
directory with the \project\ pathname.

-L<lstfil>

This option specifies that a listing file is to be created for Assembler output.
<lstfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
listing file should be sent to the standard output, although the listing file is
routed to standard output by default.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the Assembler will use the basename (filename
without extension) of the first filename encountered in the source input file
list and append .LST to the basename. If the -L option is not specified, then
the Assembler will route listing output to the standard output (usually the
console or terminal screen) by default. The -L option should be specified

Motorola DSP Assembler
Assembler Options

1-6 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

only once. If the file named in the -L option already exists, it will be
overwritten.

Example: ASM96000 -L filter.asm gauss.asm

In this example, the files FILTER.ASM and GAUSS.ASM are assem-
bled together to produce a listing file. Because no filename was giv-
en with the -L option, the output file will be named using the
basename of the first source file, in this case FILTER. The listing file
will be called FILTER.LST.

-M<pathname>

This is equivalent to a source statement of the form:

MACLIB <pathname>

The pathname must be a legal operating system pathname. The -M option
may be repeated as many times as desired. The directories will be searched
in the order specified on the command line. See the MACLIB directive
(Chapter 6) for more information.

Example: ASM56000 -M fftlib/ trans.asm

This example uses UNIX pathname conventions, and would cause
the Assembler to look in the fftlib subdirectory of the current directory
for a file with the name of the currently invoked macro found in the
source file.

-O<opt>[,<opt>,...,<opt>]

This is equivalent to a source statement of the form:

OPT <opt>[,<opt>,...,<opt>]

<opt> can be any of the options that are available with the OPT directive
(see Chapter 6). If multiple options are specified, they must be separated by
commas. The -O<opt> sequence can be repeated for as many options as
desired.

Example: ASM96000 -OS,CRE myprog.asm

This will activate the symbol table and cross reference listing options.

-P<proc>

Run the Assembler with the specified processor revision level enhance-
ments. This is for backward compatibility so that the Assembler will flag new
constructions as illegal. <proc> can be any of the processor identifiers given

Motorola DSP Assembler
Assembler Options

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 1-7

below. Note that if this option is not used the Assembler runs with all latest
revision level enhancements on by default.

Processor Identifier

DSP56001 Rev. C 56001c
DSP56002 56002
DSP56004 56004
DSP56166 56166
DSP96001 Rev. B 96001b
DSP96002 96002

Example: ASM56000 -P56001c myprog.asm

Assemble MYPROG.ASM with the DSP56000 Revision C enhance-
ments.

-Q

On some hosts the Assembler displays a banner on the console when in-
voked. This option inhibits the banner display. It has no effect on hosts
where the signon banner is not displayed by default.

Example: ASM56000 -Q myprog.asm

Assemble the file MYPROG.ASM but do not display the signon ban-
ner on the console.

-R<rev>

Run the Assembler without the specified processor revision level enhance-
ments. This is for backward compatibility so that the Assembler will flag new
constructions as illegal. <rev> can be any of the revision specifiers given be-
low, but must be appropriate for the target processor.

This option is superseded by the -P option.

Processor Revision

DSP56001 Rev. C C
DSP56002 2
DSP56004 4
DSP56166 6
DSP96000 Rev. B B
DSP96001 1

Example: ASM56000 -RC myprog.asm

Assemble MYPROG.ASM without the DSP56000 Revision C en-
hancements.

Motorola DSP Assembler
Assembler Options

1-8 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

-V

This option causes the Assembler to report assembly progress (beginning
of passes, opening and closing of input files) to the standard error output
stream. This is useful to insure that assembly is proceeding normally.

Example: ASM56000 -V myprog.asm

Assemble the file MYPROG.ASM and send progress lines to the
standard error output.

-Z

This option causes the Assembler to strip symbol information from the ab-
solute load file. Normally symbol information is retained in the object file for
symbolic reference purposes. Note that this option is valid only when the
Assembler is in absolute mode via the -A command line option and when an
object file is created (-B option).

Example: ASM56000 -A -B -Z myprog.asm

Assemble the file MYPROG.ASM in absolute mode and strip symbol
information from the load file created as output.

<filenames>

A list of operating system compatible filenames (including optional path-
names). If no extension is supplied for a given file, the Assembler first will
attempt to open the file using the filename as supplied. If that is not success-
ful the Assembler appends .ASM to the filename and attempts to open the
file again. If no pathname is specified for a given file, the Assembler will look
for that file in the current directory. The list of files will be processed sequen-
tially in the order given and all files will be used to generate the object file
and listing.

The Assembler will redirect the output listing to the standard output if the output listing is
not suppressed with the IL option, or if it is not redirected via the -L command line option
described above. The standard output generally goes to the console or terminal screen
by default, but can be diverted to a file or to a printer by using the I/O redirection facilities
of the host operating system, if available. Error messages will always appear on the stan-
dard output, regardless of any option settings. Note that some options (-B, -L) allow a
hyphen as an optional argument which indicates that the corresponding output should be
sent to the standard output stream. Unpredictable results may occur if, for example, the
object file is explicitly routed to standard output while the listing file is allowed to default to
the same output stream.

For more details on Assembler operation in a particular machine environment see Appen-
dix G, Host-dependent Information.

Motorola DSP Assembler
Assembler Processing

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 1-9

1.6 ASSEMBLER PROCESSING

The Motorola DSP Assembler is a two-pass Assembler. During the first pass the source
program is read to build the symbol and macro tables. During the second pass the object
file is generated (assembled) with reference to the tables created during pass one. It is
also during the second pass that the source program listing is produced.

Each source statement is processed completely before the next source statement is read.
As each line is read in, any translations specified by the DEFINE directive are applied.
Each statement is then processed, and the Assembler examines the label, operation
code, operand, and data transfer fields. The macro definition table is scanned for a match
with the operation code. If there is no match, the operation code and directive tables are
scanned for a match with a known opcode.

Any errors detected by the Assembler are displayed before the actual line containing the
error is printed. Errors and warnings are accumulated, and a total number of errors and
warnings is printed at the end of the source listing. If no source listing is produced, error
messages are still displayed to indicate that the assembly process did not proceed nor-
mally. The number of errors is returned as an exit status when the Assembler returns con-
trol to the host operating system.

1.7 DEFINITION OF TERMS

Since the Motorola DSP architectures are different from normal microprocessors, the pro-
grammer may not be familiar with some of the terms used in this document. The following
discussion serves to clarify some of the concepts discussed later in this manual.

The Motorola DSP architecture can have as many as five separate memory spaces re-
ferred to as the X, Y, L, P (Program), and E (EMI - Extended Memory Interface) memory
spaces. L memory space is a concatenation of X and Y data memory and is considered
by the Assembler as a superset of the X and Y memory spaces. E memory is specific to
the DSP56004 processor, and provides for different data representations for various
memory hardware configurations. The Assembler will generate object code for each
memory space, but object code can only be generated for one memory space at a time.

The memory space and address location into which the object code generated by the As-
sembler will be loaded are referred to as the load memory space and load address , re-
spectively. Because the DSP architecture allows data transfers between memory spaces,
sometimes object code is loaded into an address of one memory space but will later be
transferred to a different memory space and address before the program is run. One ex-
ample of this might be a program located in an external EPROM that will be transferred
into external program RAM before it is run. The transfer of code/data from one memory
space/address to a different memory space/address is called an overlay .

When the object code for a part of the program is generated that later will be used as an
overlay, the load memory space and load address do not correspond to the memory
space and address where the program will be run. The memory space and address loca-
tion where the code/data will be located when the program is run are referred to as the

Motorola DSP Assembler
Assembler Support For Digital Signal Processing

1-10 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

runtime memory space and runtime address , respectively. If the Assembler only used
the load address to assign values to labels, then the program would not contain the cor-
rect label references when it was transferred to the runtime memory space and the run-
time address.

During the assembly process, the Assembler uses location counters to record the ad-
dresses associated with the object code. In order to facilitate the generation of object code
for overlays, the Assembler maintains two different location counters, the load location
counter , which determines the address into which the object code will be loaded and the
runtime location counter , which determines the address assigned to labels. In addition,
the Assembler keeps track of the load memory space , which is the memory space into
which the object code will be loaded, and the runtime memory space , which is the mem-
ory space to which an overlay will be transferred and the memory space attribute that will
be assigned to labels. See Chapter 4, Software Project Management, for a practical dis-
cussion of the use of memory spaces and location counters.

The Motorola digital signal processors are capable of performing operations on modulo
and reverse-carry buffers , two data structures useful in digital signal processing applica-
tions. The DSP Assembler provides directives for establishing buffer base addresses, al-
locating buffer space, and initializing buffer contents. For a buffer to be located properly
in memory the lower bits of the starting address which encompass one less than the buffer
size must be zero. For example, the lowest address greater than zero at which a buffer of
size 32 may be located is 32 (20 hexadecimal). More generally, the buffer base address
must be a multiple of 2k, where 2k is greater than or equal to the size of the buffer. Buffers
can be allocated manually or by using the Assembler buffer directives (see Chapter 6).

The Assembler operates in either absolute or relative mode, depending on the presence
of the command line -A option. In relative mode the Assembler creates relocatable object
files. These files can be combined and relocated using the Motorola DSP linker. In ab-
solute mode the Assembler generates absolute object files. Absolute files cannot be re-
located but can be loaded directly for execution. By default the Assembler runs in relative
mode.

1.8 ASSEMBLER SUPPORT FOR DIGITAL SIGNAL PROCESSING

As mentioned previously, the Assembler offers facilities commonly found in other macro
Assemblers, such as nested macro capabilities, include files, and conditional assembly.
The Assembler must also provide extensions in support of the unconventional architec-
ture of the Motorola digital signal processors, as well as aids for programming DSP-spe-
cific applications. Some of these features are discussed briefly below; see the
appropriate chapters later in this manual for more information.

The Assembler supports the use of arbitrary algebraic expressions as arguments to vari-
ous directives and as immediate operands in certain instructions. Terms of these expres-
sions may consist of the Assembler’s own built-in functions, which perform data
conversion, comparison, and computational operations. In the digital signal processing
domain transcendental functions for computing sine, cosine, and natural logarithm are

Motorola DSP Assembler
Assembler Support For Digital Signal Processing

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 1-11

useful for initializing data values in memory, such as sine/cosine tables for FFT algo-
rithms. Also, there are functions for easily converting values expressed in decimal floating
point to their binary or fractional equivalents. This conversion is done automatically for im-
mediate instruction operands and arguments to the DC directive (see Chapter 6). See
Chapter 3 for more information on Assembler expressions, operators, and built-in func-
tions.

The register set of the Motorola digital signal processors allows for efficient use of modulo
and reverse-carry buffers for FFT applications. The Assembler supports this architecture
by providing several special-purpose directives for allocating circular buffers. The
BADDR , BUFFER, DSM, and DSR directives automatically advance the program counter
to the next appropriate base address given the buffer size, and perform various boundary
and magnitude checks to insure that the buffer is valid. The BSM and BSR provide for
automatic alignment and block initialization of DSP buffers. Since a buffer allocated in this
fashion can cause alignment gaps in memory, the MU option (see the OPT directive,
Chapter 6) may be used to generate a full memory utilization report. See Chapter 6 for
more information on Assembler directives and options.

	Chapter 1
	Motorola DSP Assembler
	1.1 Introduction
	1.2 Assembly Language
	1.3 Installing The Assembler
	1.4 Running The Assembler
	DSPASM [options] <filenames>
	where:
	DSPASM
	[options]
	Command options that are used regularly may be pla...
	Option arguments may immediately follow the option...

	1.5 Assembler Options
	-A
	-B[<objfil>]
	Example: ASM56000 -Bfilter main.asm fft.asm fio.as...

	-D<symbol> <string>
	This is equivalent to a source statement of the fo...
	Example: ASM96000 -D POINTS 16 prog.asm

	-EA <errfil>
	-EW <errfil>
	Example: ASM96000�-EWerrors�prog.asm

	-F<argfil>
	Example: ASM96000 -Fopts.cmd

	-G
	Example: ASM56000 -B -G myprog.asm

	-I<pathname>
	Example: ASM56000 -I\project\ testprog

	-L<lstfil>
	Example: ASM96000 -L filter.asm gauss.asm

	-M<pathname>
	This is equivalent to a source statement of the fo...
	Example: ASM56000 -M fftlib/ trans.asm

	-O<opt>[,<opt>,...,<opt>]
	This is equivalent to a source statement of the fo...
	Example: ASM96000 -OS,CRE myprog.asm

	-P<proc>
	Processor Identifier
	DSP56001 Rev. C 56001c DSP56002 56002 DSP56004 560...
	Example: ASM56000 �-P56001c �myprog.asm

	-Q
	Example: ASM56000 -Q myprog.asm

	-R<rev>
	Processor Revision
	DSP56001 Rev. C C DSP56002 2 DSP56004 4 DSP56166 6...
	Example: ASM56000 -RC myprog.asm

	-V
	Example: ASM56000 -V myprog.asm

	-Z
	Example: ASM56000 -A -B -Z myprog.asm

	<filenames>

	1.6 Assembler Processing
	1.7 Definition Of Terms
	1.8 Assembler Support For Digital Signal Processin...

