Gesellschaft fir
Parallele Systemtechnik mbH

MULTICLUSTER Series
Hardware Documetation
&
Software Documentation

Copyright: PARSYTEC GmbH

MSsSCcC
Author: Mass Storage Controler

Busless Transputer Module
Winfried Mularski with SCSI and floppy interface

" Technical Documentation

Version 1.3 , May 1989

PART III Installation

Hardware Installation
PC users

Using the MULTICLUSTER backplane
Software installation

e

75
75
75

76
78

PART I Hardware 1
1. Block Diagram and General Description 1
1.1 Introduction 1
1.2 Processor 3
1.3 Clock 3
1.4 Links 3
1.5 Memory 4
1.6 SCSI/Floppy Controller 4
1.7 Booting 4
2. The SCSI Section 5
2.1 The SCSI Controller 5
2.2 The SCSI Interface 5
2.3 The speed of the SCSI Interface 7
3. The Floppy Section 9
3.1 The Floppy Controller 9
3.2 The Floppy Interface 9
4. Transputer to Controllers Interface 10
4.1 The BigLatch 10
4.2 The data transfer controler 13
5. Programming the MSC Board 14
5.1 Overview of the OCCAM Address Space 14
5.2 Software Adresses of the Links 24
5.3 Events 25
5.4 Error and Analyse 25
6. Hardware Details 27
6.1 Reset signals 27
6.2 Jumper Allocation 29
6.3 Pin-out of 96-way DIN connector 33
6.4 Pin-out of 34-way floppy connector 34
6.5 Pin-out of 64-way Extension Connector 35
6.6 The LEDs : 36
6.7 Technical Data 36
6.8

Wiring diagram 36

PART II

7.

8.

10.

Software
Introduction
The msc.driver software package

Interfaces of msc.driver
View of the devices

The class concept

The device type concept
The device number concept
The medium concept

The medium type concept
The logical block concept
The buffer concept

The internal protocol
Error handling

00 00 00 00 00 00 00 00 O 0O
L] L]
PRPOONOAOTd WP

O

msc.driver commands

9.1 The communication procedures

9.2 Parameters of the interface procedures
9.3 The clear() - procedure

9.4 The 1init() - procedure

9.5 The 1load() - procedure

9.6 The unload() - procedure

9.7 The read() - procedure

9.8 The write() - procedure

9.9 The w.format() - procedure

9.10 The f.format() - procedure

9.11 The s.format() - procedure

9.12 The verify() - procedure

9.13 The msc.driver.finish() - procedure
9.14 The nop() - procedure

9.15 The w.mode.sense() - procedure
9.16 The w.mode.select.sector.l()
9.17 The w.mode.select.parity()
9.18 The get.protocol() - procedure
9.19 The get.params() - procedure

9.20 The start.stop.unit() - procedure
9.21 The send.command() - procedure
9.22 The reassign.blocks() - procedure
9.23 The reserve() - procedure

9.24 The release() - procedure

9.25 Time relationship of commands

The communication protocol

10.1 Channel types

10.2 The phases of communication

10.3 The result structure
10.4 The msc.driver library
10.5 Action Numbers

47

47

48

49
50
51
51
52
52
52
53
54
55
55

57

57
58
60
60
61
62
62
62
63
63
64
64
64
64
65
65
65
66
66

67

67
67
67
68
68

69

69
70
72
73
74

PART I Hardware
1. Block Diagram and General Description

1.1 Introduction

The MSC board is part of the MULTICLUSTER and SUPERCLUSTER
series. The MSC board serves as a mass storage controller,
which interfaces via SCSI bus and floppy bus to SCSI and loppy
disk drive devices. It can operate as a host or as a
fileserver/mass storage subsystem in a transputer network.

Multiple MSC boards can be used to drastically increase the
I/0 bandwidth of a transputer network. This is achieved by
connecting to every MSC it's own mass storage devices (mainly
winchesters). A MSC can do SCSI bus transfers in parallel with
link data transfers over all 4 1links without significant
performance degradation.

The big memory size of 4 MByte enables implementation of
sophisticated buffer algorithms.

The MEGAFRAME modular concept also supports fail save systens:
For example two or more MSC's, each with its own winchester of
the same type, perform in parallel read and write operations
with the same data (n-fold redundancy).

Furtheron in case of a program crash the MSC board can be
reset by sending to it a link reset signal over any of the 4
MEGAFRAME links.

Features:

- 32 bit Transputer T800 (opt. T414)

- 4 MByte memory with parity checking (16 MByte, when 4
MBit DRAMs are avaiable)

- 4 RS-422 driven MULTICLUSTER links

- directly interfaces to SCSI bus (ANSI SCSI X3T9.2)

- directly interfaces to floppy bus

- average asynchronous SCSI transfer rate: 1.1 MByte/s

- average synchronous SCSI transfer rate: 1.8 MByte/s

- bidirectional data transfer over all 4 1links in
parallel with SCSI bus data transfer

- additional onboard 64 pin connector with transputer
interface for extension boards

- software package available with complete set of medium
level communication procedures (clear, load, unload,
read, write etc.); dynamical multisector blocks

- 5 Volt only, low power

- small board size: extended euro card

4x
RS 422

Driver/ Receiver

p—
Link O 4 4 PARSYTEC Links
Al _ _ S PALs
Link 1
A|VDA| Control Signals L-V
Link 2 W H FW
w
Link 3)
¢ '_ —A Data R E D D I
E R E E D
Transfer Transputer S R C C E
E 0 u] o N
4 » Controller T R 1 3 T
¢ p SCSsI -~ -~ Y Memory
LmomH V] Controller ﬂ Z N\ W m W '
Bus ¢] -+ _.|J\
7U Big Address
Fl Lateh Latch
A N opry aic
Disk (
N V] Controller
Floppy 4
Bus A N
Address/Data Bus y
peripheral
Data Bus —
96 pin 64 pin
Connector Extension
Connector
PARSYTEC GmbH
Size |[Document Number REV
A MSC schematic 1.1
Date: February 19, 1988[Sheet of

1.2 Processor

The MSC board runs with a T800 or T414 Transputer. The T800 is
a 32 bit processor with 4 K bytes of on-chip static RAM. It
runs at 20 MHz to perform an instruction throughput of 10
MIPS. Four high speed serial links (10 or 20 Mbit/sec) support
the communication with other transputers in a network.

Furthermore the T800 has a floating point unit on chip to
perform 1.5 MFLOPS/sec.

1.3 Clock

All transputers derive their processor clock from an internal
oscillator, which is synchronized by an internal PLL to an
external 5 MHz oscillator. The transputer clock speed is
defined by jumpers. See Jumper Allocation.

1.4 Links

The four bidirectional serial links of the transputer operate
independently of the processing element when transfering data
from or to memory by using fast DMA. So the use of the 1links
does only 1lightly degrade processor performance. The 1links
have a default speed of 10 Mbit/sec and can also operate at 5
and 20 Mbit/sec. The link speeds can be selected by jumpers.

The MSC board has four MULTICLUSTER links. A MULTICLUSTER 1link
consists of four signals: Two signals transfer the serial 1link
data, one for both directions, and two reset signals, also one
for both directions. Using these reset signals the transputer
can generate a reset for any of its four neighbour
transputers. Further on such a 1link reset does not effect a
normal transputer reset but a so called Analyse/Reset. The
Analyse/Reset preserves the internal status of the resetted
transputer section. This internal status can be analysed by a
user written procedure, which must be downloaded into the
transputer (see "Error and Analyse"). »

Link and link reset signals, which leave the board, are driven
by RS422 drivers. Link and link reset signals which enter the
board are conditioned by RS-422 receivers. This provides a
considerably higher noise immunity and longer distances for
data transmission (up to 10 meters at 20 MBits/sec, up to 30
meters at 10 or 5 MBits/sec)).

1.5 Memory

The memory is organized as 1M x 32 bit, i.e. 4 MByte, and
consists of dynamic RAM's. The 4 bytes in the 32 bit word are
parity checked by additional 1M x 4 bit memory. The MSC board
can be populated with 16 MByte memory when the next generation
dynamic RAM's (4 Mbit DRAMs) are available.

1.6 8CSI/Floppy Controller

The WD33C93 SCSI Controller provides the interface to the SCSI
Bus. To speed up SCSI data transfer a multiplexer-buffer-
latch, called BigLatch (see "The BigLatch"), connects the 8
bit controller data bus to the 32 bit transputer data bus.

The WD37C65 Floppy Controller interfaces to the floppy bus.
Both controllers and the BigLatch are under control of the
Data Transfer Controller DTC.

1.7 Booting

After a transputer reset there are two ways to boot the
transputer. They are selected by a jumper. The first is that
the transputer executes the boot code of an EPROM, which
resides on an optional extension board. In this case physical
memory location #7FFFFFFE is interpreted as an instruction and
executed. The second way is to load the boot code over a
transputer link: The first incoming data from one of the links
will be interpreted as boot code.

2. The 8SCSI Section

2.1 The SCSI Controller

The MSC board contains the WD33C93 SCSI-bus interface
controller from Western Digital Corp.. The internal registers
are accessible by the transputer (see "Overview of the OCCAM
Adress Space").

The controller works in non multiplexed bus mode. That means,
to access an internal register of the controler the transputer
must first write the address of the desired register into the
controlers address register and then accesses the register.

There are three ways for the transputer to notice an interrupt
of the SCSI Controller.

- The interrupt bit of the Auxiliary Status Register of
the SCSI Controller can be polled.

- The interrupt line can be polled (see "BigLatch Status
Register")

- The interrupt 1line can activate the EVENTREQ input of
the transputer (see "Events" and "Jumper J9").

The reset input is activated at power on, external reset (see
"Reset Signals") or by clearing the flip flop PRES (see "Flip
flop PRES").

The DBA mode (Direct Buffer Access) of the WD33C93 is
implemented, because it delivers the maximum SCSI performance.
In this mode the controller actively performs read/write
cycles during SCSI data phases.

2.2 The SCSI Interface

The WD33C93 SCSI controller is fully compatible with ANSI SCSI
X3T9.2 specifications. The MSC board achieves an average data
transfer rate of 1.1 MByte/sec (asynchronous) and 1.8
MByte/sec (synchronous). The chip includes 48 mA drivers for
direct connection to the single ended SCSI bus, therefore the
SCSI bus can be up to 6 meters in length. '

All SCSI signals are terminated with 220/330 ohm on board. The
SCSI RST signal is connected to the 96 pin bus connector and
cannot be activated by the transputer.

Prrrrrrecbrerrrerecbvevererce el

80 70 60 ={s] 40 30 20 10 ' 0

corrrcthecroero boecorrooc bovcororccbeoocorac hoocoroa oo booooooc booooen

Jhidk X 24 v e W ee

_ L Ik £ 72,
b (EXENERNNY B2 1_
(X} o0 [1
MMMM XT1| IXT2 XT3 XT4 NM Ues "u ¢ba
Al-ﬂ|..U.. [] [N]) & -“"....""%
%HHN e @ @ dpE Sessse
M b 4
MMMMHM uss onuoou"o
e . o b
A te usa o8
uso ® e (X}
% (EXE NN NN
[A XX N N) WD
KN Uso
T 0
* e
e i)
uet =+ ues olle
T T T N Y M XTI T T T T M T ol
%] doooVee oo -———-—-—-oo
OO0 SOOGCOOSS
* ® o® £ _ _ Ld
X o @ ee T[T T T T T ®
: mm::mm:msam::::amm I = +—
7, *® @ eo® | [}
- *® e D 11111111 o
N * ® ® @ L] NN
(EX Y EENNEREY] % ues 0 7
db b Ak b Ak Ak Ak bk b Ak oAb Ak ok A AR Ak A b teeessses * q_l

FEErETd ____________________________________.___ ___________________._____________________

80 70 60 50 40 30 20 10 0

Freeerrrrrererererrererererrrerrrerrren

PARSYTEC GmbH

Juelicher Str. 338
D —~ 5100 RAachen

Size|Document Number REV
A MSC Board Layout 1.1
Date: February 10, 1988|Sheet 7 of 8

e

2.3 The speed of the 8CSI Interface

The MSC achieves a peek rate of 3.0 - 3.5 MBytes/sec in
asynchronous mode. This high data rate can not be sustained by
most winchesters, so the limiting factor in SCSI bandwidth is
nearly always the winchester.

See sheet "MSC SCSI & Link transfer rate". Due to overhead of
the SCSI protocol and internal operation in the winchester,
the continuous data rate will be lower than 3.0 MBytes/Sec.

MSC SCSI and Link Transfer Rate

CAll values measured with stretched WREN IV)

@ SCSI transfer, process suitching and all 4 links
SCSI Bus activity (measured with stretched WREN IV)>

— [[T [+— T [+—"T 7T}

(8 DMA engines) can orerate in parallel.

@® SCSI peak transfer rate is 3.5 MByte/sec

during a sector transfer. (independant of number of running links) 3 sectors
A Al <« -
Butes each Pause
in 650us. of
® Average transfer rate during long transfers 400us.

is more than 1 MByte /sec. at sector Start/end.

e Test enviromnment:

Link 0 out .
Link 0 in MW.»O\5105 terminal /keyboard
Link 1 out)
WREN IV Link 1 in ¢]
1 S¢Sl - Bus 7AMWAU Links 1,2 and 3
stretched Link 2 out e are reconnected This means,
Link 2 in ¢ to themself. 6 DMA engines are running.
Link 3 out |
. Link 3 in 4
Hinchester
[] Link transfer rate during SCSI sector »1.3uqomu
(During SCSI pause the links can reach their maximum speed.)
T8: 1.1 MByte/sec on any 1ink,
even if all 6 DMA engines are running.
T4 : 570 KBwte/sec on any link,
even if all 6 DMA engines are running.
PARSYTEC GmbH
Title

MSC SCSI & Link Transfer Rate

SizeDocument Number
B MSCRATE.ORC
ate Octoker 21, 1985[cheet of

3. The Floppy Section

3.1 The Floppy Controller

The MSC board contains the WD37C65 Floppy Disk Subsystem
Controller from Western Digital Corporation. The features are:
IBM PC/AT compatible format, dual speed spindle drive support,
direct floppy disk drive interface, drives up to 4 floppy or
micro floppy disk drives, data rates of 125, 250, 300, and 500
kbit/sec. Input XT1 (26) is driven by a 16 MHz clock.

The internal registers are accessible by the transputer (see
"Ooverview of the OCCAM Address Space").

At the end of a multisector data transfer the Terminal Count
input of the floppy controller must be activated to signal the
transfer of the last data byte to the controller. See "Flip
flop Read" in "Overview of the OCCAM address space".

Floppy data transfers are intended to be done without DMA but
by polling. So this flip flop combination was used for this
special purpose.

There are three ways for the transputer to notice an interrupt
of the floppy controler.

- Reading the Status Register of the floppy controller.

- The interrupt line can be polled (see "BigLatch Status
Register")

- The interrupt line can activate the EVENTREQ input of
the transputer (see "Events" and "Jumper J9").

The reset input is activated at power on, external reset (see
"Reset Signals") or by clearing the flip flop PRES (see "Flip
flop PRES"). A

3.2 The Floppy Interface

Outgoing signals are open collector. incoming signals have
pull up resistors of 1 k ohm. See "Pin out of 34-way Floppy
Connector".

The msc.driver software package uses the WD37C65 in IBM-AT
mode. This means, Motor Select 1 and Drive Select 1 are both
active during accesses to Floppy Drive 1. Floppy Drive 2 is
accessed, when Motor Select 2 and Drive Select 2 are both
active. The floppy drive 1 must be connected at the end of the
34-wire floppy cable. The wires 10 = 16 comprise a subcable,
which must be twistet half a turn before connecting to drive
1. See wiring diagramm of "MSC Backplane”.

10

4. Transputer to Controllers Interface

4.1 The BigLatch

The BigLatch is a multifunctional symmetrical bidirectional
driver/latch, which connects an 8 bit bus with a 32 bit bus.
Its purpose is to buffer data during SCSI data transfers. The
bytewise incoming high speed SCSI data is assembled in the
BigLatch to produce a stream of 32 bit words at lower speed
for the transputer and vice versa.

For convenience lets call the two busses the P (peripheral)
data bus and the T (transputer) data bus. At both bus
interfaces there are 4 8-bit latches. The BigLatch connects
the 8 bit wide peripheral data bus P to the 32 bit wide
transputer data bus T (see sheet "MSC schematic").

The BigLatch can transfer the data on the T bus to the P bus
and vice versa (transparent mode).

The BigLatch can latch the data of one of the busses and later
send this data to the other bus (latch mode).

There are the following functions:

If the transputer reads a register in the SCSI or floppy
controler, the BigLatch works like a transparent bus driver.
The 8 bit output produced by the accessed controler is
transmitted fourfold to the four bytes of the transputer bus.

If the transputer writes to a register in the SCSI or floppy
controler, the BigLatch works like a transparent bus driver in
the other direction. The contents of the bits 0-7 of the
transputer data bus are transmitted to the accessed controler.
Bits 8-31 are don't-care bits.

The latch facility of the BigLatch is used only during SCSI
data transfers, when the SCSI controler works in DBA mode: The
data transfer controler converts the read/write cycles of the
SCSI controler to direct the data bytes into/out of the
BigLatch. The data transfer controler supervises the SCSI data
transfer which takes place between the SCSI controler and the
BigLatch and the transputer. The transputer on the other side
of the BigLatch gets/supplies the SCSI data by normal memory
read/writes accesses.

During SCSI DBA (direct buffer access of WD33C93) read the
SCSI controler supplies data bytewise. Up to four bytes can be
buffered in the BigLatch. The DBA transfer has to wait (under
control of the data transfer controler) until the transputer
reads out the four stored data bytes in the Biglatch by a
single word read access.

11

During SCSI DBA write the DBA transfer has to wait until the
transputer writes a word (i.e. four bytes) into the BigLatch.
Then the DBA proceeds: The data transfer controler directs the
BigLatch to send the four stored bytes one after the other to
the requesting SCSI controler.

~

DO-7

4
)
DO-7 |4
A |
peripheral
Bus ¢) N
DO - D7
DO-7 |4 I
hJ L
DO-7 g4
h |

Signals

D 8 Bit Latch

HUV Multiplexer 2x8 Bit —-> 8 Bit

ADO - AD7

AD8 — ADI1S
Transputer
Bus

AD16 — AD23

AD24 — AD31

PARSYTEC GmbH

Size|Document Number
A MSC schematic details

REV
1.1

Date: February 18, 1988[Sheet

of

e’

13

4.2 The data transfer controler

The main purpose of the data transfer controler is to
establish highspeed SCSI data transfer:

- By controling the BigLatch.

- The transputer and the SCSI controler are tightly
coupled during high speed data transfer under the
control of the data transfer controler.

The data transfer controler operates internally synchronous
with respect to the clock of the transputer and the SCSI
controler. It operates asynchronous to the floppy controler.

The data transfer controler contains three registers, one
state machine, i.e. an automaton, a watch dog timer and 6 user
settable flip flops.

The automaton is called Byte cCounter, which counts how many
bytes are written into (during DBA read) or read out (during
DBA write) of the BigLatch. It halts DBA transfer or
transputer accesses when the BigLatch needs service from the
transputer or from the SCSI controller, because it is full or
empty.

The automaton is invisible to the programmer and is triggered
by transputer and DBA accesses. But the knowledge about it is
somewhat helpful in understanding the data transfer controler.

The six flip flops are called PRES, SCSI, READ, DBA, EXTO and
DUMMY. For a description see "Overview of OCCAM Address
Space".

The state BiglLatch is full/empty of the Byte Counter Automaton
can be polled by the transputer: Bit 5 of the BigLatch Status
Register. This enables SCSI data transfer completely under
software control in contrast to high speed transfer, where the
transputer makes a block move operation between the BigLatch
and the memory.

14

5. Programming the MSC Board

5.1 Overview of the OCCAM Address Space

The T800/T414 transputer can address 1 Giga-words of 32 bit.
In OCCAM the address space ranges from #00000000 to #3FFFFFFF
(adresses in present OCCAM-2-Implementation PLACEment as word
address) :

#00000000
internal
Transputer RAM
#00000200
On board
4 MByte Memory
#00100000
#20000000
PALs, Controllers
#20002000
BigLatch
#20004000
#3FFC0000
Extension Board

#3FFFFFFF

The addresses of all peripherals except BigLatch are located
between #20000000 and #20000050. Each peripheral device
(controller, PAL) is accessible through the lowest byte of a
word (bits 0-7).

Transputer accesses 1into unused address areas result in an
address error (see bit 1 of "Error Register" and "Error and
Analyse").

15

Overview of peripheral addresses

Word address Bits Function
#20000000 0-7 Ident bytes from Ident PAL
(read only)
#20000020 0-5 Error register of Error PAL
(read only)
#20000030 0-3 Link reset out register of Reset PAL
» (write only)
#20000046 -4-7 Status register of data transfer
controler

(read only)

#20000046 4-7 Control Register 1 of data transfer
controler
(write only)

#20000047 4-7 Control register 2 of data transfer
controler
(write only)

#20002000 - 0-31 BigLatch
#20003FFF (read/write)

The SCSI and floppy controler share some addresses. They are
distinguished by the state of the flip flop SCSI.

case flip flop SCSI = 1

#20000040 0-7 Auxiliary Status Register of SCSI
controler (read only)

#20000040 0-7 Address Register of SCSI controler
(write only)

#20000041 0-7 Register File of SCSI controler
(read/write)

16

case flip flop SCSI = 0

#2000040 0-7 Master Status Register of floppy
controler
(read only)

#20000041 0-7 Data Register of floppy controler
(read/write)
#20000042 0-7 Control Regisﬁer of floppy controler

(write only)

#20000043 0-7 Operations Register of floppy controler
(write only)

A read access to any of the floppy or SCSI controler
registers, all of which are bytewide, results in a word
containing 4 identical bytes. E.g. a read of a status
register, which contains #13, returns the word #13131313.

Ident PAL at #20000000
The Ident PAL works like a bytewide PROM and is read only. It

can be programmed to hold several bytes for identification or
other purposes. There is one default value of #5A.

Error Register of Error PAL at #20000020
This Register latches the following error conditions:

Bit Error Condition

0 Cleared if ERROR output of transputer was activated.
1 Cleared if transputer accesses an unused address.

2 Cleared if parity error in byte 0 (i.e. bits 0-7).

3 Cleared if parity error in byte 1 (i.e. bits 8-15).
4 Cleared if parity error in byte 2 (i.e. bits 16-23).
5 Cleared if parity error in byte 3. (i.e. bits 24-31).

After the register is initialized (see below) it monitors the
6 error conditions mentioned above. The register latches the
first occuring error condition. At the same time the register
will be 1locked, i.e. error conditions which will come up
afterwards will not change the status of the error register.

17

The contents of this register is not destroyed by a transputer
reset or analyse/reset. So after a program crash and after
resetting the transputer a debug procedure can read out the
Error Register. :

Initialization of the Error Register

After a power-on-reset there will be random bits in the
register, but the register is disabled and con not generate
ERRORIN.

The first read of the register will clear the bits and enables
it to monitor and latch error conditions, but ERRORIN can not
be activated yet. The second read completes the
initialization, i.e. ERRORIN can be activated.

ERRORIN is activated after the register has catched an .error
condition. The register will not be <changed by an
Analyse/Reset. Two read accesses to the register will clear
the register and bring it into proper operation again as
mentioned above.

Link Reset Out Register at #20000030

Using this register the transputer can activate the four Link
Reset Out signals. To prevent the Link Reset Out signals to be
accidently activated by a '"crashed" program there 1is an
automaton which monitors this register. The automaton must be
brought into the correct state by writing a sequence of values
into the register. Writing a #00000000 and any value, which
the automaton doesn't expect, will bring it back into the
starting state. The value sequence is:

#00000000
#00000001
#00000002
#00000003

The next written value sets or clears the four Link Reset
Outputs:

If bit i, i=0..3, of the value is set then the corresponding
Link Reset Output signal of link i is activated. If the bit is
cleared the corresponding Link Reset Output is also cleared.

The following OCCAM 2 procedure sends a link reset (i.e. an
Analyse/Reset) to some of its neighbours. If bit 1 in the
parameter "neighbour.mask" is set, then neighbour i will get a
link reset:

18

PROC 1link.reset (VAL INT neighbour.mask)
INT 1link.reset.out.req :
PLACE link.reset.out.reg AT #20000030 :
TIMER clock :
VAL INT duration IS 2 :
SEQ

link.reset.out.reg := 0

link.reset.out.reg := 1

link.reset.out.reg := 2

link.reset.out.reg := 3 :

link.reset.out.reg := neighbour.mask

clock ? time

clock ? AFTER time PLUS duration -- 128 microseconds delay
link.reset.out.reg := 0 -- deactivate all link resets

The Control Register 1 at #20000046

This register is write only and contains two flip flops. The
transputer must have a copy of the register state somewhere.

Bit 7 6 5 4

res. res. EXTO DUMMY

Flip flop "EXTO"

EXTO is short for External Output. There is a signal EXTO an
the 96 pin connector (pin SBM 22, see Wire Diagram), which can
be directly controlled by the transputer. The signal EXTO

always follows the state of the flip flop EXTO and can be used
for any purpose. This signal is driven by a 74F32 OR gate.

Flip flop "DUMMY"

This flip flop has no defined function yet.

The Control Register 2 at #20000047

This register is write only and contains four flip flops. The
transputer must have a copy of the register state somewhere.

Bit 7 6 5 4

DBA READ PRES SCSI

19

Flip flop "DBA"

Only used in SCSI mode (i.e. flip flop SCSI = 1). DBA informs
the data transfer controler, when the SCSI controller will do
data transfer in DBA mode.

DBA = 0: The data transfer controler is not in DBA mode.
The transputer can make normal register accesses to
the SCSI controler in order to initialize it.
BigLatch accesses, although meaningless outside DBA
mode, will hang (i.e. wait forever), when WORD = 0,
and will succeed, when WORD = 1. DBA = 0 will clear
the TO flip flop. The watch dog timer has no effect.

DBA = 1: The data transfer controler is in DBA mode and waits

for the SCSI controller to transfer SCSI data bytes
via DBA cycles. The transputer cannot access any
register of the SCSI controler.
The transputer can access the BigLatch, but has to
wait (via WAIT input) until the BigLatch is full
(during SCSI Read operation) or empty (during SCSI
Write operation). The watch dog timer can set the TO
flip flop.

Flip flop “READ"

This flip flop indicates to the data transfer controler the
direction of the DBA transfer between the SCSI controler and
the BigLatch during DBA mode (DBA = 1).

During floppy operation (SCSI = DBA = 0) the state of READ
will be send into the terminal count input of the floppy
controler and the inverse state will be send to the DACK
input. This feature is necessary for the last byte of a floppy
read/write. '

20

Flip flop "PRES"

PRES stands for peripheral reset. PRES = 1 will activate the
reset 1input of the SCSI controler or the floppy controler,
depending on the state of the SCSI flip flop in the data
transfer controler (see flip flop SCSI):

SCSI PRES Reset line activated for
0 1 floppy controler
1 1 SCSI controler
X 0 none

The minimal reset duration is controler dependent.

Flip flop "SCSI"

The SCSI controler and the floppy controler both share the
same window in the adress space: #20000040-43. The flip flop
SCSI in the data transfer controler defines with which of
these two controllers the transputer wants to work. The
selected controller can be

- accessed ,
- resetted and
- polled via interrupt 1line (using BigLatch Status
Register)
The other controller is not accessible at that time.

SCSI = 1: This selects the SCSI controler. Accesses to
the floppy controler are impossible.

SCSI

]
o
..

This selects the floppy controler. The SCSI
controler is not accessible.

Status Register of data transfer controler at #20000046

This Register is read only. The state of all bits except bits
4 - 7 are undefined.

Bit 7 6 5 4

TO WORD |FL_RDY INT

21

Flip flop "“TO"

TO stands for Time Out. The highest SCSI data transfer rate is
achieved, when the SCSI controler works in DBA mode and at the
same tlme the transputer makes a block move on the BigLatch.
Transputer BigLatch accesses in DBA mode must wait until the
SCSI controler has filled/emptied the BigLatch. This tight
coupling can create transputer wait times longer than 16 us,
so that refresh cycles will be lost.

The TO flip flop prevents this in DBA mode. TO is cleared at
the start of DBA mode and normal block move proceeds. Every
BigLatch access starts the watch dog timer. The first access,
which lasts longer then 13 us, will set TO, which will cause
every subsequent BigLatch access to flnlSh immediately (the
transputer is no longer coupled with the SCSI controller). So
the data phase is corrupted, but refresh is preserved. The
transputer finishes the block move operation and then tests
the state of TO. If TO = 1, the transputer Kknows, that the
data phase was broken.

Note: TO must be read before it is cleared by DBA = 0.

22

Flip flop WORD

WORD must be used on low speed SCSI data transfers, i.e. one
cannot be sure that the transputer has never to wait longer
than 13us on BigLatch accesses (see TO). In this case the
transputer polls the flip flop WORD and if it is set, the
transputer can make a BigLatch access.

WORD = 1: The BigLatch is full or empty. The SCSI
controler is halted until the transputer has
accessed the BigLatch.

WORD

I
o

The BigLatch is filled or emptied by the SCSI
controler and the transputer is waiting until
it is full/empty.

FL_RDY line

This bit always reflects the state of the ready line of the
floppy bus. The floppy controler does not use the ready line.

INT line
INT = 1 indicates an activated interrupt line from the floppy
(SCSI = 0) or SCSI controler (SCSI = 1), depending on the

state of the flip flop SCSI.

BigLatch at #20002000 - #20003FFF

Every access into this address area accesses the BigLatch. A
transputer read access to the BiglLatch reads 4 Bytes at a
time. A transputer write access latches 4 Bytes at a time into
the BigLatch.

Any transputer access to this address (in DBA mode) clears the
automaton Byte Counter and the flip flop WORD in the data
transfer controler.

A transputer access to the BigLatch lets the transputer wait
until WORD becomes set to 1.

Address Register of the SCSI controler at #20000040

If the flip flop SCSI is set a write access at this address
writes directly to the SCSI controler Address Register.

T~

23

Auxiliary Status Register of the SCSI controler at #20000040

If the flip flop SCSI is set a read access at this address
reads the SCSI controler Auxiliary Status Register.

Register File of the SCSI controler at #20000041

If the flip flop SCSI is set the transputer can access at this
address the SCSI controler Register File.

Master Status Register of floppy controler at #20000040
If the flip flop SCSI is cleared a read access at this address

will return the content of the floppy controler Master Status
Register.

Data Register of floppy controler at #20000041

If the flip flop SCSI is cleared the data register of the
floppy controler can be accessed at this address.

Control Register of the floppy controler at #20000042

If the flip flop SCSI 1is cleared a write access to this
address writes into the Control Register of the floppy
controler.

Operations Register of the floppy controler at #20000043

If the flip flop SCSI is cleared a write access 'at this
address writes into the Operations Register of the floppy
controler.

5.2 Software Adresses of the Links

After declaration of the
allocation is valid for the 4 links of the transputer:

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

Link0.Output
Linkl.Output
Link2.Output
Link3.0utput
LinkO.Input
Linkl.Input
Link2.Input
Link3.Input

24

channels

AT
AT
AT
AT
AT
AT
AT
AT

#0
#1
$2
#3
#4
#5
#6
#7

the following

se eo o0 o0 o0 00 o0 o0

The event channel has the number #8 (see "Events").

address

25

5.3 Events

To interrupt a running process on external events the
transputer has a facility called event. When the EVENTREQ
input of the transputer will be activated the event handling
must be supported by software as following: An OCCAM channel
must be assigned to the event pin using the construct

PLACE event AT #8 :

The event process will be inactive and waiting on a statement
like:

event ? signal

Within a maximum of 58 processor cycles provided no other high
level processes are executed the event process will be
restarted after the event pin 1is triggered. To ensure
completion within a minimum time the event process should be a
high priority one.

There are five sources which can generate a transputer event:

- The interrupt line of the SCSI controler

The interrupt line of the floppy controler

- The data transfer controler (see "Flip flop DMATRIG")
- The Error PAL

- The extension board

The event handling can be disabled by Jumper 9.

5.4 Error and Analyse

During development of a program on a transputer network it
will sometimes occur that one or more transputers will fail.
For debugging purposes it is necessary to find out the cause
of the crash after resetting the "“crashed" transputers. A
special kind of transputer reset is needed which does not
destroy the state of the whole transputer system. The
Analyse/Reset provides this service. After the Analyse/Reset a
special debug procedure can be loaded into the transputer to
monitor the internal state.

The Reset PAL executes an Analyse/Reset when a link reset is
received by the MSC board. The transputer reacts with an
organized shutdown of all processes. Three kinds of error
conditions can occur. They are stored in the Error Register of
the Error PAL for later inquiry of the error condition (see
"Error Register of the Error PAL"):

26

- Program Error
- Address Error
- Parity Error

Program errors are division by zero, integer overflow, array
access outside its boundaries etc. This activates the error
flag inside the transputer and the ERROR output of the
transputer.

A transputer access to an unused address generates an address
error. This will set a bit in the Error Register.

After the Analyse/Reset a debug pfocedure can monitor the
Error Register of the Error PAL.

Jumper JO0 decides whether

- both an event and an error condition or
- only an event

can activate the ERRORIN input of the transputer (see "Jumpér
Jo").

J9 connects the ERRORIN input with the otherwise inactive
EVENTREQ input ("Jumper J9").

If the MSC board runs as a host the Analyse/Reset will destroy
the shutdown. status.

The user can start a process when ERRORIN is activated (see
"Events"). The activation of the ERRORIN input has the same
effect as an internal transputer error.

27

6. Hardware Details

6.1 Reset signals
There are the following reset signals on the board:

- Power On Reset

- External Reset

- Link Reset In / Out

- Data transfer controler Reset
- SCSI / floppy controler Reset
- SCSI Bus Reset

Power On and External Reset

A Power On Reset of 0.2 seconds will be generated every time
the VCC voltage ramps up from below 4.6 volt above 4.6 volt.
The External Reset, which is no 1link reset (pin a24 DIN
connector), and the Power On Reset have the same effect:

- The transputer is reset.

- The Reset PAL and the Error PAL is reset.

- The flip flops and automatons in the data transfer
controler are reset, i.e. cleared.

- The Link receivers are deactivated during the active
reset duration, so there are no incoming link data

- The SCSI and floppy controlers are reset.

Link Reset In

A MULTICLUSTER 1link consists of two 1link signals (for both
directions) and two link reset signals (for both directions).
If one of the four incoming link reset signals are activated,
then '

- the transputer will get an Analyse/Reset (see "Error
and Analyse")

- and the link input receivers will be disabled for the
active duration of the link reset signal.

10 microseconds after deactivation of the link reset in signal
the transputer is ready to communicate over a link using "Peek
and Poke" or for booting.

28

Link Reset oOut

The MSC board can send to any of its four neighbouring
transputers a 1link reset via the MULTICLUSTER links. This is
achieved by writing to the Link Reset Out Register (see "Link
Reset Out Register"). The state of the MSC board transputer
system is not modified by this.

Data transfer controler Reset

The data transfer controler is programmed and reset via its
serial EPROM at Power On Reset and External Reset.

SCSI and floppy controler Reset

Both controlers are reset at Power On Reset and External
Reset. Each controller can be reset individually by the
transputer (see "Flip flop PRES" and "Flip flop SCSI").

SCSI Bus Reset

The RST signal of the SCSI bus is not connected to the SCSI
controler. It is terminated with 220/330 resistors and
available on the DIN connector, pin bil8.

29

6.2 Jumper Allocation

The locations of jumpers on the MSC board are shown at the
sheet "MSC Board Layout Discretes".

Jumper JO

The ERROR PAL (U52) activates the ERRORIN input of the
transputer when the data transfer controler or the extension
board requests an event. J0 enables or disables the activation
of the ERRORIN input in cause of an error condition: program
error, address error or parity error.

Jumper J1

J1 selects the memory access time of the transputer. The
timing of the transputers control signals, which are in memory
accesses involved, can be varied (See "External Memory
Configuration" in the transputer manual).

10

20

30

80 70 60

50 40 30 20 10

o}

orccdh oo oo oo o bbb oo o g oo oo

- & N m—lluH
- % % % L1 Qwﬁ-_nu T - -
- |7 J3 e e o —
— & 201 <R& . . -
H.n.z”_,o_ﬁ Dmm Dmm . C &% [rRP8 | —
e p2 RPO RP1 RP2 RP3 o/ Js Js Jz Je o —
= FessssseN FesssssY FeeeveeoNEsosooo ¥ o] |} [#] B4+ [# 4@ M —
— | et eR2 Y =y & o —
kS —_
— Rz - ¥ ¥ Jit qRrCa olle _
N Y 4 dkKEdk qkc2 olle —
— T kS o, RP9 ollel |[RP1O] __
"= T - olle -
- Ak ole -
. % Ji n«,rl %. % HERP& b :ﬁ _
— |§.. —
—| = fas Saame | I b
- Y S ot olle —
— Jio K2 Ea T RP11CI|RPL2) —
— b | | S | | S | | S | S | S | S (O | | A | T | A | ¢ 4k K3k o.__.v c3 olls —
— 1 = Cco ojle —
B g b & —
—1 & O O T oo —
_ RS R10 Y ofle —
—_— K3 T ®|(® ——
o P13 P14 —
| e RPS %00 R olel |R -
— a ! R4 olle —
— KX o|ie p —
— * ¥ Ak 4_ —
—_ AR L | | | A I U | | S | S | S | O | R | TR | M | M | —
i ____ FErrirn ____ NN ____ PEEEEErrrp e e reprirrertd ____ P ____ FEEEETL ____ P ____
80 70 60 50 40 30 20 10 s]
PARSYTEC GmbH
Juelicher Str. 338
D — 5100 Aachen
Size |[Document Number REY
A MSC Board Layout Discretes 1.1

Date: February 10, 1988[Sheet 7 _of

10 I8a4clge6T ‘g AeW ayeq
T°T U0 " dWNLOSKH a
J4BQUNN juBwNDOQg 8ZT
BUT}IBS Jadune SSH
2137
8-4 9-5 2Z-1 ot S
HAWD D31ASYHUL 8-¢ 9-5 g£-2Z -] S
8~-¢ S-b £-Z S ot
6-8 S-v g£-Z az ot
8-¢4 S-v -7 ot ot
6-8 9-5 2Z-T or oz
6-8 9-5 f§£-Z oz oz
ELEIy =T 50T T U
TOBS/$3ITAW UT Paads wutl
‘PaJdadwNl aq bX 11K} T 13 [
CPAAUISEY ® ® [}
‘PaAUBSEY
Z S 8
Pl s .
11r Qr L ‘9r ‘ar ¢ o0
T 9 <
e o @
c®
S@
08 SAWTY
L@ [T L]
‘PatlleIsuY 3 XY IELE]
puwoq 8-2 9-5 £-2 0°'sg °® Jajndsued)
UOTSUBIXT
6-8 s-b 2-T 0'of e — -
6-8 S—-t £-Z 0°'sZ 2@ 20
‘pJeoq 6-8 9-5 2Z-7 s'zz idJ
UOTSUBIXS S S@®
ou ST ausyy 6-8 9-5 £-2 0°oz ° ®
t
8-4 S-tv £-2 S°LT i< 14 v ® id J
a1r L LTy CZTAWY z®
Paads £® X] £ @
LELYES
JOSSaD0Ug T e e .
I Z
.qal T® T® Te T
Jdayndsueuy 3o Zz
Utd NINOMM3 .ﬂq}
o3} P#3}dauuod
Jsindsuedy jo T
UtTd BIWINIA3
‘WOY *NINONY3
wouy s3o00q ajeATID® JO0U ued
Jaindsued) SUOTITPUOD wOUu3
*JUO3}STSAL UMOP (Ind
Aq noy pIaY ze
‘PajeATIOR CHUT CNIYONUI
29 30U ued wouy s3i00q a2jeATIDE UeD
<d3jndsuedy jo T® <“aindsued) SUOTITPUOD woud3l
UYTd BININIAZ

Bburiyzyess uadwn(Hg

o

32

Jumper J2

J2 selects the speed of the transputer links. Link speed can
be set to 5, 10 and 20 MBits/sec. Links 1-3 have always the
same 1link speed. The speed of 1link 0 can be selected

separately. Link speed combinations of 5 and 20 MHz
simultaneously are not possible.

Jumper J3

J3 defines whether the transputer will boot from ROM or from
link. :

Jumper J4
J4 defines the internal clock frequency at which the processor

part of the transputer runs. This has no influence on the link
speed, which is fixed at 5, 10 and 20 MBits/sec.

Jumpers J5, J6, J7, J8

These are 4 soldering pads, which are reserved.

Jumper J9
J9 makes a connection between the ERRORIN pin and the EVENTREQ
pin of the transputer. So if this Jjumper is inserted an

activation of ERRORIN of the ERROR PAL US52 also generates an
event.

Jumper J10 -

J10 must jumpered if there is no extension board installed on
the MSC board.

Jumper J11

Reserved. Must be jumpered.

6.3

Reset Out
Link oOut

0O -
0o -

Fl. Revol./min

Link In
Reset In
Fl. Ready
Reset Out
Link oOut

0 +
o +

1 -
1 -

Fl. Motor on 2

Link In
Reset In

1+
1 +

Fl. Drive Sel.

Reset Out

2 -

Link oOut 2 -
Fl. Direction

Link In
Reset In
Fl. Write
Reset Out
Link oOut
Fl. Track
Link In
Reset In
Ext. Reset
vCC

vVCC

vCccC

GND

GND

GND

2 +
2 +
Data
3...
3_
00

3 +
3 +

2

33

GND

SCSI
SCSI
SCSI
GND

SCSI
SCSI
SCSI
GND

SCSI
SCSI
SCSI
GND

SCSI
SCSI
SCSI
GND

SCSI
SCSI
SCSI
GND

Ext.
SCSI
SCSI
SCSI

vCC
VCC
vCcC
GND
GND
GND

Pin-out of 96-way DIN connector

DBO
DB1
DB2

DB3
DB4
DB5

DB6
DB7
DBP

ATN
BSY
ACK

RST
MSG
SEL

Output
Cc/D
REQ
I/0

Reset Out
Link oOut

0o +
0o +

Fl. Head Load

Link 1In
Reset In
Fl. Index
Reset Out
Link oOut
Fl. Drive
Link 1In
Reset In
Fl. Motor
Reset Out
Link oOut
Fl. Step
Link 1In
Reset In
Fl. Write
Reset Out
Link oOut
Fl. Write
Link 1In
Reset In

0O -
0 -

H

)
|-+ +

NNO R RNR P
3
=

+ +

2_
2_
Enable
3 +

3 +
Prot.
3_
3_

Fl. Read Data
Fl. Head Select

VCC
vVCcC
vccC
GND
GND
GND

34

6.4 Pin-out of 34-way floppy connector

floppy Signal MSC Function
connector name in/out
2 not connected
4 not connected
6 FL_RPM out Rounds per minute
8 FL_IDX in Index Pulse
10 FL MO1 out Motor Select 1
12 FL_DS2- out Drive Select 2
14 FL_DS1 out Drive Select 1
16 FL_MO2 out Motor Select 2
18 FL_DIRC out Direction Controll
20 FL_STEP out Step Pulse
22 FL_WD out Write Data
24 FL_WE out Write Enable
26 ‘ FL_TROO in Track 00
28 FL_WP in Write Protect
30 FL_RDD in Read Data
32 FL_HS out Head Select
34 FL_RDY in Ready (used only by DTC)

All odd numbered pins (except pin 1) are connected to Ground.
Pin 1 is not connected.

35

6.5 Pin-out of 64-way Extension Connector

a b

1: GND GND

2: GND GND

3: VCC VCC

4: vCC vce

5: NOTWBO * NOTWB1 *
6: NOTWB2 +* NOTWB3 *
7: MEMREQ MEMGRANT
8: NOTSO * NOTS1 =*
9: NOTS2 * NOTS3 *
10: NOTS4 =* NOTRD *
11: GND GND

12: vVCC vVCC

13: ADO AD1

14: AD2 AD3

15: AD4 AD5
16: AD6 AD7

17: ADS8 AD9

18: AD10 AD11

19: AD12 AD13
20: AD14 AD15
21: GND GND
22: vce EVENTACK
23: EXTENSION SELECT * EXTENSION WAIT END *
24: EVENT REQUEST POWER ON RESET *
25: ADle6 AD17
26: AD18 AD19

27: AD20 AD21
28: AD22 AD23
29: AD24 AD25

30: AD26 AD27
31: AD28 AD29

32: AD30 AD31

Signals with an asterisk are active low.

The signal EXTENSION SELECT gets active when the transputer
accesses the extension address space (see Overview of the
OCCAM address space). This signal is NOT validated by any of
the strobes NOTS0-4.

During Extension Board accesses the transputer inserts wait
states until the signal EXTENSION WAIT END is activated.
EXTENSION WAIT END is synchronized for the transputer on the
MSC board.

36

6.6 The LEDs

There are three LEDs on the front panel. When no process is
running the only transputer accesses to memory will be refresh
accesses. This can be seen as a dark shining memory access

LED.

0] Red LED: 5 V Power
o) Green LED: Transputer access to external
: memory
(NOTSO signal of transputer)
o Green LED: SCSI BSY line

6.7 Technical Data

Size: Extended Euro card 220mm X 100mm
Layers: 6 layer multilayer (including GND and VCC
plane)
Power requirements: 5 Volt
1,7 A standby
4,5 A maximum

6.8 Wiring diagram

On the following pages the wiring diagrams of the MSC board
are shown.

F) 35 1 319995 6861 '8 duny @3¢

T°7 $Yd B “djndsued] OSKW a
JRQUNN JUSMNDOQ 32T o3 dhill Ao 1
Uayo¥y 0015 - a 94 IusPI 4 4-) QAo
8EE 43S JaudTIaNg Pt Wd wouu3
HAWD D3 1ASHYd 61— 9407
el 30 PerT
gize, opn g2, 4R e
v £ld S0 &I ; IT1 bt grwas YINTAD
§—E1q POI bI[E—F ¢Aluo OTIr T 71515500
£ 1] £01 £ utd sTY3 sip N3A T OINIAT
S d 201 ZIH NITAS Jor s8I N3A TT T OINIAT
1}d 101 11 0 S or 3 sd4 21 JH3A
o0s1o0 S—3%1q 00 oI |2 g vdd 91 NIA ETEYTS
(o] = £44 SI L) v W
ebil e Z44 b1
733 £1 ody2
<TFTOERN TTTTETOR = 3 93 &I gqu_ 00A9p0
N NYgoEay 22| %o 11 1594 o0
T arTay 4 Hodu
<TFOIMIo TEYYUIRION = >
—— S1IQ 008)
qd vs LIOM
> TON T LS L
(EIIEHET> e ioN £ 52 NEvE CRUINIAT>
JITENXU _.Lbullrwn 1s o393 tw.mnﬁm%ﬂ_
rN— v o33l ERERIFE R
155594 9 0s T
0%d 5155594
294 veave _[>O0A 4y rd 23
bLave T oH Pszz? zam 15Y =5 =T
azvn givn ¥ =+d T8M
e ® 3 DRION — 79 Oo8M duon INggSHIH SITRTH
azomsT— © | 3 i & rr s NIYN3 o mIRdee—
80 me T M T 3 bE T doud Tud 3esay
® d a ® d a T£aY IR0z
[Z0a 3 kA 1599 <8 ocay 30 ano
AILIY 1y < 6zay Yo« LR
ov 25 8zay
ap XA & 22a9 ul..l 644 61
TTIERITS | e 8] 2239 -8 g B I e 0 Pl
TIY TALR L 933 91 2
_ oAy 3 szav JEION $33 s1 g
orr o5dd [~ szay — g3 81 ol
_ % 5
Ty 5 12a9 Zox 244 zin
A T | g g3 Bl i
Zr1 O < 81ay "
e | iR Al Sl
b >
L, s — fid =93
I? v
<WEJY 20 21 b1Q0
1552 501 91 s £1Q4
" S0I SI 0 £ Zray
(IE3IE5T> IV oI b1 7 Fo TTQY
g £0I £1 £ oray
i Z0I ZI ST £ 6qy — aNo
o ot 11) ed—35] sav &> 507 L
o ¥ +r
o L4 O |, — Lav F T T ORET>
4 3qu E2
s vay
g £Qu 3>
T uspooag =1 X zao
810z z11 [E§- 8N — 51 Ta
Tsn as T oo 7 il TR
orI I T OI0T
6I o
s0 o1]
<1539 1239350
901 91 oIy
WyHo T 014 So01 &1 a RS
y—&1d PO b1 2
< WEg53Y} £0I £1
sl o o
E Q@37 0SLON 5]
P TSI 5 00~ oI g usaub g3 0zz S —
fode 28 o o g
. L O—F vag
<TI0 2§ o) /

< ADEG, , 317 >

T ——————— e .
u2 A s 2L 4 pazi 2 MAZ HENR
vee A g N s 11y o LR LR MEMGRAN
A 518 EVEN N A k4 8 ?0a1i 65 | MalL RP11A Pia P18
1 Aab 8 [_u»..zhb/ a 28 2y — GNO e GND GND+
R Rap § oce 5 Z3112% s |2 Dpaci s —7 | mag i N2 T3 1
= E % 3B vee < 0 VCC < 2]
sl HE R sl
N W
A04 s NOTS2 L | & 4w 33 MEMRES 2 FEFSRANT 3
b3 n n X
Su— erma G NGTSZ 913 NOT >3
v D VaFIZY NOTE4 2 NOT 3
5 GND } DS GND F DS
vee a g S EVENL ua 2
A EVEN YEE < 5 < S
Bi—% B oo 2 1a 1y | DATL 2ol MAz, N 3 : 3
e m vhrnm.m.wu..f rd wu 2v |2 DAS mUmllumy /I w 2 S
I yE F -3 8 o 9. pAdi 8—7 i Mg A g S aba 3
1531 & LAlE 13 12 pA6} 43 12 2
ael ¥ A a 8 ey — —HAE AD14 2 ab1E 3
RLi N o eventabk GNOF 2
A/ vee < S
o 4 x 33 £l S S
us NTR 2 3T
vee opiz g 8 EveN S _EVENR varIs? | —2R1E 3 3
apyo b-& PARIZ | ue L] 3 S
¢ opo
wwu abzd s h 1A 1v |-2-0A10 4—3 | Mag a 3 Q
E 3 1B 3 S
st i : 28 av|7oasie—r Lwee | N0 o 2 3
A5t u A Mn 3 3y 2 \=Ab DY
arzeo- t ACfSRepT D e e e Rror ¢
RP2 TIIN_ ThllV(OO
uL0 2 315/
vCC n,WM W a EVEN S EVEN3Z ﬁ# Py 4 x 33
B
GND 74F 157 MAKQ (a)s
e 2% ¢ oop p-6-paRIZ | af
E
(1]
o3 A N NOTWCQ, 33 2
—aY
7AFZ80 NOISCO. .43 N N
PAROCO. . 33
/éﬁuu RP3 —OHElT I >
lme 4 x 33
<PARITO 3] }bARAL 0/ ¢ FLCSRAR> NQTWQ " N
vElellﬂm.mbnll\
EVERIT. . 3T EXENCO.L.20 7aF32
A
[0 RP4B NOTMY —
[ECSRAR >) Jii MBiX | 43 | nuBL]
33
32 FaF32 hweco. .33
RPIZELT
)& ue2x | e—s | nuez
MESRERT N\ NOTHW2
vaF32
D30 > .F.wl»/
NnWB3 /
NOTWZ e
<olITREET}
a2
PARSYTEC GmbH
<oFISEL} ,
izeDocument Number EV
A5 LAC2 B MSC memory Interface 1.1

Date June 28, 1585 Fheet z

FI

3asqg[eset T0T FJendqag

RJaowal OSK

JAQUINN_JUsWNDOg BZT

HAWD D3 IASAYd

ayeq

TXW

(30}

]

ST

!
loof

Y SRS

«

7

TXWT_HYYQ

=
i

Fababubabababsatis

ialatalaia

f

TXWI_WEdg

TXWE_WENQ

o
a
<]

n
a
ixiElrizisixiz]sls

TXHT_WUNQ

TXKW

TXHW

3

|

<
x| Ziz|oElE|]

q|T

fedled
[4

iefaialalaia }1

QI
x|

PA{I]
TXWT_WQYg

vy

8 0T

Tiajalail
x| x| x|z

TXWT_WUNQ

Fﬂ%
bbb

Ktleielie
| Eix]

il

q
€] XiT|

TXNT_Wydg

|~

]
o
z

ql s
gj ﬁ S

TOT " CJoN LOTTTOTSH)

SUOU

S95U]

SgyuU

<EBLO 31T S000..300

LAtz 22 hAL2..222
| (=Ys3:1a]
PSR
PSR e
IN out
IN ouT
IN
mu Wﬂﬁ To BigLatch
IN out v CUSB-61>
IN ouTt
N out
(13 d el PP WRIL0..30 2 424 our ouT
Sk% ouT
$ out ouTt
X12 Je out QuT
e [JPixt 3 211N our 0l -~
cLK 4 &1 IN nCS
Q 4 21 IN out o
15 FHz IN gur N
CLKXT a1y ouT I3 —nok To SCSI - Controller
us? X o MM Mz;”uu cues>
NXRCLK _S7] RCLK
nPOR un mmu. cLK YDIN s i [E8—nine
oA z DIN 49 _ncs 37
RESET /i nPORL 44 | prmpy SUT [3F —nLBTE
XEI7IE out (A8 nLDOR
vee o0 PRRDRAN
60| ek OMﬂ H@hxuﬂ To Floppy Controller
EEVERTE PEVENTR 36 |y N IR9 cues>
HDC
[EVENTACK EVENTACK 37 | 1\ wuﬂ w —
BT HALL__2 1y MM SR EDY
PESTLR >—— PROCCLK 12 IN \ R Ussce
our E—Eilte 2 1
GNo % e ou1 AXEATTE ND
" SUT 2 LRIOIZY 7,
<TFOR e DONE/PRSG
R4
R10 oo XCZ618 RPIE ax?
10k d 1k 1 vee
1 INJ Line is 1
1N6263 breakable
vde D1
vee LED red
‘4 POwer LED
vee M
EDIM
RPSE
vee aK?
R1
220
e :
RS
220 . c1 GND
EERESET>—DERESET 1—2 NERESIN 24 RIN 100n .
porz g |uner [A—S2REE 1412 ono
Lo SEN | 7 pvee
ioon RP1LF EE— RES Erli_. ND PARSYTEC GmbH
1 7705 SizeDocument Number v
GND & B MSC X4i1 R
GND 10u inx and Reset 1.1
Date June 28, 1988 heet 4 of -]

3O S «Itc_wwmm.— ‘0T Auenuqay ajeq
#dejusluY Addold 3 ISOS OSW]
JaquNN _juawnsog ez Q31 Asng
uaaus 37
HawD 531ASuYd
ZHW_ 0T
LY
29A 294 A0 g TBASd BELYE)
1 TIX
2y B oo ©J3uod oy
05dy ELEL] TETdl :naoww -
TaTdl o—1 L
8r 5925QM L .
segeam 3
an Zix AN
2HH 97 32X wadg ¢
153 1531 A b
A 3y 11X 51 1531 N
Tix O¥I oy sut 1831 Wrey ST
238 [Zzeougu— 30 gz —iaNe
o 3 CIe)
m o (S 74 7 9/1 OUINI g (STIND>
M 134] b
M 134 [-1e} ZAJUJY
S L2 L WW 750 MOLEN 4L .
D T h LS CBRE L e FEu 3% 3 Saau
L2} (R <R o “ T
<STIUTIE <SASHU e 4t
o T 53 LU L]
Q [T E I Tov—t% a5
&
Pai O oy
S ECEE33 TZ Zo1
<JH5F>) .a b b
CEamF]) 23 : T
v] =) va M N
o 83U 9 Tk 25 25
) L] M
a 3 - za H
313) 19 5 =
S0 & 0q 1% an <3259
tz*-028q —or Ty <R
XTI LA
o — ans ano T <EEd
bo¥ ™4 Ly t9sbez _ L9SbET
A I g : . T Tr—<IET T
T} 8 8
(Lo) Ty
v 0TT/02Z
d 2o oTdd 294 8d¥ 304 R R« 1o o~ oy - S 4 B e L 6 e
6dy
rTrrITT jd4Adk A+
N \
CIT T OJ0N N N
ZS9U0HbL 94OHbS LOHbL Z59)40HbY
s ves b veshr ves by
avs aus e H Al aus &< TH 1D aus [5< OF
ay ay HEs ay L ay -
vad b 985 pry—i L] vad ply {31218 ved biy—i-d 128
avo 8uo ZH-30 89 aud> Th-3087 8ud BV 30 Tad
sa svu sa svy 88 sy . sa sy
H 28 2y (EIESY H—£l1.s v -s30—EH 28 o T ! 28 oo (1 —£39
E 98 9y 3 " %8 o9y C % 98 9u i 98 9y
M sd Sy E TL s8 sy g T S8 sy Tl s8 sy)
e b8 by S X b8 by g L b8 by ¥ b8 by
H £8 €9 H £8 £v g 3 £8 fu . £8 £9 3
H za zv 3 H za zv g M za 2o X za 2y
e Te Tu a5 Ta Tv g 3o T8 Tu [P n—£ll7a T
85N [3] T3m
<ITEOI0Y YT

LROLCQO, .22
CROLD 31 B2 N PoA nDBLO. .73 POB POC
1.ROOT ° o LROON o
Coot 3 S LOON 2
ERTO 3T y-%C0- 33 EFLRPH>—PFLREN S 2 EFL_FoL>—"rh-H0L o
RION CRIOY
o Loow "o Lroon <GEL DD OELEDY S 3 <O L 3
N L
Loo |7 N_LROQ | 7 toil 3 3 LOIN 3
001 —eROQI BFL_Fo2 nPLJMog © o BFLDEL NFL_DS1 o
LTIN 3 5 Ll >
veeoft vee oft P 4 9 AFLReL 9
OFL D32 Dbt 0 o FL 0T “ROSN 0
GND -3 GND w -0 2] -Q
LOIN LROIN FEJaRe 210 ° PSR ED
Lal n —
Lol i o _LROL 5 BFCDIRS s S S RFLSTEP oy 2
LO1I LROLI LRIZN 3 3 13T 3
<BELHr—OELH ° S i 3
vee vee wRosl wm.o o LR 3
% Q O
GND GND 4 <AFL_TRO0}—PFhoR00 o o <DEL T —ELh S
o o S
LOZN LROZN 3 457) CRIST
Lo2 iis N_LROZ2 i 15 RERESEY 4T3 3 <FFLROO—DELROO 3
LO2T LRO2I DY S nFL _HS
A LS ° o
vCe vCC VCC < O <O VCC <& -0
. 128135 o 4 o
GND GND ND Le2 o 3019 GND . >4
— O 2% k
LOZN LROIN I 31 b &
LOZ 1 LRO3 1 3213 3273 23
—LROIL_ Te96 V&96 Ve96
vee vee
ve? vées LILO, .23 iL0. . 3T >
y "
26L531 26LS31
LRICO Z7 3
EE> RES / —RT >
ND
_wUrilnzo 334 4GND Wﬂ.rl..nzo
LION 2 u—l 10 LRION 2
LIOI ! X LRIOIL =Y i —LRIO
RP? 173
vee AIL.DN_ vee VCC gt 8 svee
ND
Wﬂr.lazo L er—d L ieND Wnur.lozo n
LIIN 4 ﬁ LRIIN 4 [
+ 132 LIl * LRIL
LIiI mDuH s LRIII PUM» s
RFY? RPG
vee g vee Ve g vee
o ND
Wn.r.l.nzo n i 4r—h L eND Wﬂrl.nzo n
LI2N 6 _l LRIZN 6 [}
+ 5 LIz * LRI2
LIzl mn.mp e LRI2X) 2
34 RFY
vce AIIrUm_ vee vee AILD& vee
ND
W.U.»I|.nzo i . 8L L GND Wﬂu»llozo
LIZN Q¥ an 1z) LRIZN Q¥
LIS] 9 LRIZI i) —
7Fe 3
<onAIIrDL 4_pyce <ooAl|rﬂum 8 _ pyvee
RP14 RP13 Ues RP11 RP14 RPL3 uee
4x 1k 4%120 4x ik 4% 1k 4x 1k 4% 120 4x 1k 26LS32B PARSYTEC GmbH
izeDocument Number
B MSC Links and Bus Connector 1.1
[Date February 10, 1988[Gheet e _of 8

3o 1 388938861 52 1149y a1eg
T a _
ABGUNN 3UBWNDO, Y JO3DBUUOD ruUNy B yrey JO3DBUUOD arqed JO3DBUUO)
310A § Jamod AND Janogd T BAT4Q Pa3S TN} puw Z 3ATUQ Rodot 4 sng
suwdroea OSKH 2T ¥3qY Pajeledas Rddo1y
LAES P z1 F 9T—-0T SBUTM F F ‘ﬁ
UsySe¥y 001S T 2 1qe39ns
BEE 4I5S JaydTranp or — —
HWD D31ASY¥Ud m m
' P
9 9 — pJeog
H aN® H osM
£ £
z z
T T -
°
sng Rddold
ST10d 2IXZ 331STA[JISSI
£ MUY Z MUt T VY] 0 MYTT Im mm mm
6T10d §XZ °*(Jassal 6FT10d §XZ ‘lJassaly B8T10d §XZ *14BSEB| 6T[0d §XZ ° [J4BSSIW of €2
ot or ot -qJ 8z ¢2
NYO. NQ
6 mm 6 6 6 9z sZ
8 8 1% 8 8 g vZ £z
2 Z T 2 s qd 2z 12
9 9 9 9 oz 67
S aN! S an! s S 87 &1
v v 17T v v 91 St
£ £ &t £ £ o vT £7
¥ 1)48 £ z z 2 Z1 11
T T T T 2 o7 6
NT1 » 8 ¢
C 9 s x>
ERRE D, -
g3z Tp—
k4
WOS WYS
9 9
7 7
TE
o apo aN o an o
3 od) .3m |.mmom MW MW
ZrTdr T10d SZXZ aisTa(Jassay 29 2z DON 2z
T 2 2
I b MMW < 4 l- 14] }44
01do K| vy £v £2 & £2
Zv T zz zz
S (e — g 5t s 5 i 5
—i9 7 ol . 9g s¢ 67 61
] oLv 8 ve £ = 81 T ey
¥ 2€ 1§ g 21 NITTY s
" g5 g : &
[EEF-amE W 3
34 NN 2¢ sz 2do NZST vT bT
vZ £2 RELER] £1 &S £3
3t FTOH" z CY4-{omlE &
o g ol = o Ty
s .
Ti0d vXNIMLM.:uh. w“ w,.__” i M w] NT. w
o 4
—d9o sp—iigdd ZT 1T z L z
[F) d
—de £p 5 401 € = 9 9 = 2
—q=_t STeEde— 45 & E H H E 5
3 g dv £ £ £ NO LT £
qz L 5 z z LI'FL 8 z
1%] T T o T

sT1 ST2 sST3 sT4
LETON L o - BLIN ° FL_ps2x °
P O 2% 2%
8 3 LiN 3 ot S
K M L o MSC~GNI ﬂFW? = o OB7 % 4 S
1] »
not used DL ® IM nzo& F i W GND _ _HW
50T 3 pB2x > Q o X
OON 3] SIN 3 MSC—aN NHM
ND —LR ROIT S DBSx
— MSC—GN ROIN by Hﬂw
ope RMPKR JP1x%10 JP1%10 JP1m10 JPix1D
*
SE \T2N sTS sSTée RIZN sT? RE sT8
» 3 »
& 51 2 RI3T S 1 ox 3
N o b S FL_RODw™ D4
1 >4 = 1 Lo [OL] o
rleiste 2x2S5 polig 1 1RCW DS GND h9—20O [] O GND —2—0
- Bus FLSTEPx 3 32 x 3 FL_HSw 3
(] b ACK w.r 3 X
GND OeN o DY MS Ni
ROST o [2) RO3T o x
N P o MSC—GND 1 RO3N S M
JP1%10 JPim10 JP1®10 JPim10
¥4
43 ig—
FL_RP
s 6
GND 5 &R 1
1115 :
13 15 A S3
15 16 L — . —d1 2p—
17 18 $55x — BST® _ ___d43 ab—
19 20 b 25 —ds 6b—
Ww Ww o —_—EXre = 87 8p—
25 26 Wnﬁ P A-IT)
27 26 =
3132 =
3333 p —RLY®
Messerleiste 2x17 polig
Floppy Bus
0
N
1 1 1 1
2 2 2 W.K 2
3 3 3 3
] a 4 3
s s s ND S ND
¢ : £ : :
8 8 4 M] PARWYTEC GmbH
2 R 2 2 Q2N 2 3 FIET
10 10 10 .
Messerl. 2x5 polig Messerl. 2x5 polig Messerl. 2xS polig SCSI-PC-Adapter Sheet 1
Link O Link 1 Link 2 Link 3 SizePocument Number EV
B SCSIPCL.ORC 1.0
Oate May 8, 198%9[Sheet of

J0 EX T T L 7€
240° 2041895 a 5SH
ABQUINN JIUMUNDOQ #ZT *PY—W8I OSKH "PU-W8I g 94, "PYU—WEI OSH
Z 32845 4s3depY-Dd-150S ° wnw 24, oA =t v A v R0
s [she & Sy 138 Shy—ae o
WD 53 IASHUL o — aND o 04— OND o — aND S
S ¢ S : i S
> e &> 50A
S & 55A 2 & > 35 2 STE—> 334 o
LY AL AT o
S o o S o o
C1-iZ M) Z=UTSTy LT
be FUTINT wqdd 13 S pe PETAL XL S pe [P EIEEE] 2
g SEACEE KITT 3 g 2=UTIN LXe o) 3 pe TUTEIY NETNT 3
o =5 m% ._mxiu bia b4 ° EX il u._ ano 61X 3 3 +.:qu — NEIT 3
w
pe 51 NEOTT 4 STer—¢—3ne 3 [hEL 3 g 8-1ABHN [} >4
be CEUEE i 3 g EX IS *85U 3 P S=IA5 YEouT 3
P4 D4 b6 $=UToad oo W15y 3 pe +0OY > g S
g 3 b Z-UToN 9 g Ut NZ 19T 3
P e S g — N0 [3ke):) 3 pe wUTSACT NZ 1 3
pe 113 p: + INOXNN ® A58 o o POON [To}*h {1l DS
e MDY ° — 31RO mwl.ozo wNL1D S & =~ 1NN [l 2140
o o ° + 1RO o P8 Pk Yal=] ¥ 12031 5
pe 3 g $-U7153y %J5] 3 g >0y CkA-{) 3
S 3 g $-uY *J 89 3 e ot CA#Ehl 3
[og o o —I7OANT ano =94d 0 o Y NT 13
p:4 > e SE + INONY b4 o FAIoL] WZOW 1A Ds
o ° > =370 CR1:[o] S ?leulew. 17137 DY
S 3 g F3r0a3 ¥ 580 S pe =3 1oy 3
b4 3 b¢ oL E T R =84 3 o2 7X Pt F - 3
o ~ul +
e 3 S ei Tt o S L b
n]
M. 28 0+Inos3y NooNY w M wm 5 nmw g 1AND *o8d nmm. S w\m m|wuo 3 0 °“__ 3
e 3 —Iro53d o
>Z3 2%a |Zd zg L
*PY-WET ‘PY-WET © rpy-wal *PY—u
oTwTdr OTaTdl oTxTar APSH
o ° o
TI+I75s w5 15+ IN0E TETINGS QND e fal]
O — JoMWMI.) e P 4 aTo] O o9T S
o- TIASIN T AND o + jux;m o rs uwxz ”z Orm H Mwwﬂm
PP P LlcH R oIXT PO LRI &I EReiNT (VR O =IO
Py, wSH 13 & NSHN W g Td g ans S HEToINSINT I3 T
S ~UTyN TS e SN ool o 4 aND P NOSNT wod1d 13
e U = [) N & —UYSINT S - N
SEc o S SRR e S
= = N =
EM 2surg 1] o V£ B o FUTESS =aM T4 © S
218 915 s1s
teusys teusts
*PY-WE T SH
‘PY-WET *PY-HET *PY-WET Y- H
oTwTdr OTxTdr OTxTdl s H F
o o 4
T+ 13:] T2+ 1IN0 & Log T e {OND O
o x o- 3 £ 1O+ In05 I
ST o+ S Liness SEteines: =P Sagnnets
TIROHANT =980 —YRGN e —IRG < =
S5 ono T — SE o e T e
%N * 1 =
SE Uy %780 S ETu T ° —TysReT— OND ° ONDAN *Wdy 3
S FUDIN wYOW 4 e SR pe X4 [MR F] pe U TN
- = - -
Zm FUTERS — w2sd d © oTes o- SRR 3 ¥ BruTE IS
£1s z1s T1s

g s o
IIIIIIIIIIIIIIIIIIH’IHIIIIIIIIIIIHIII'

o
o

>
o

AMPMODU
AMP HV-100

Diese 8 Stueck
10-poligen
Federleisten
befinden

sich auf der
Loetseite !!

o 10 20 30

Frrrerrren _________________

s,55 41534y
h F — 0
1 -~ 4 =T F 4 -
4 Nﬂ.wa Lo m
il s2 -
v w =
8,89 Y
2 oe -
* {] LH] —
L] L) —
M e L1 =
1] LR] —
1] o.0 -—
(] LH] —
100mm 88,9 o _”uu =
L2 m
4=® oo -
3% s e
2 Gu..w .H.
; F R L3 m
! i A =
y —_ a0

5,55 RN _________________________:__

0o 10 20 30

PARSYTEC GmbH

Title
Layout of SCSI - PC —~ Adapter
ize[Document Number EV
W‘W SCSIPCLA.ORC ﬁ.o
Date May 8, 1983 Cheet of

47

PART II Software

7. Introduction

The msc.driver module is a software package for the PARSYTEC
MSC board to facilitate data input/output to the mass storage
devices. It is available as a separate compiled module, called
SC, and is fully written in OCCAM. It has an easy to use
communication interface. A set of interface procedures is
delivered in OCCAM source code (read(), write(), 1load(),
unload(), verify etc.). The user integrates them into his
software layer. The msc.driver module hides complicated device
features and gives a simple, general and common view of the
devices.

This release of the msc.driver software package supports most
kinds of

- Winchester Disk Drives
- Tape Storage Devices (Streamers)
- Floppy Disk Drives.
More sorts of devices will be supported in future.

It has the following features:

- Fully written in OCCAM.

Available as a SC (separately compiled module)

- Communication over four channels: Command Channel, Read
Channel, Write Channel and Result Channel.

A small and easy to use set of communication procedures
in OCCAM source is also available:

Clear driver package

Init logical unit

Load medium

Unload medium

Read logical block

Write logical block

Format, Verify etc.

- SCSI devices are dynamically requested to report their
parameters (capacity, sector size, e.t.c.).

- Without recompilation the software package can be dyna-
mically reconfigured at any time:
o The number and type of devices can be changed.
o The logical block size can be redefined.

- Makes a trace of all performed internal actions, called
the internal protocol. This can be requested by the
user and inspected for debugging purposes.

48

- Supports up to 4 winchesters, 2 streamers and 2
floppies in any combination.

- Does a selftest of SCSI and floppy controlers and
devices.

8. The msc.driver software package

The msc.driver module represents the lowest level of a
hierarchy of software layers and interfaces directly to the
SCSI and floppy controlers:

7~

user program or
operating system Upper
|| Layer

buffer control

I /

msc.driver

SCSI Floppy
Contr. Contr.
SCSI bus I floppy busl

Storage Devices

Winch Winch Streamer Floppy Floppy
0 1 0 o 1

The msc.driver module is a OCCAM process which is normally
started at system start and then running forever.

The 1layer, with which msc.driver communicates, 1is a 0OCCAM
process running in parallel with msc.driver and is called the
upper layer.

The upper layer requests data transfer actions of the
msc.driver process by sending command blocks via an OCCAM
channel . After msc.driver has received a command block the
data 1is transferred and at 1last the msc.driver returns a
result block to the upper layer process.

49

The msc.driver process has a single internal buffer of
64 K Byte, which buffers the data of every device on it's way
from the devices to the upper layer and vice versa. So the
biggest block of data that can be transferred with a single
command is 64 K Byte.

The msc.driver process incorporates no buffer strategies.
Every block to be read/written will be physically
read/written. The block buffering is the task of the upper
layer process.

8.1 Interfaces of msc.driver
There are two interfaces to the outside world of msc.driver:

- The interface to the SCSI and floppy controller.
- The interface to the upper layer process.

The msc.driver process communicates with the storage devices
through the SCSI and floppy controlers. The upper layer can
access these controllers also and can do input/output directly
with its own procedures. But this should be avoided since the
msc.driver process can be confused. In future there will be
some additional procedures available for special device
handling (testing, formatting etc.).

The msc.driver process communicates with the upper 1layer
process through OCCAM channels. These may be software channels
or transputer 1links. Generally the buffer control software
resides on the MSC board itself and not outside in order to
use the great amount of local memory for efficiently storing
large data sets.

50

Four channels are provided for communication:

Command Channel
>
Upper Result Channel
Layer < msc.driver
Process Read Channel Process
<
Write Channel
>

- A Command Channel to send commands to the msc.driver.

- A Result Channel , over which the msc.driver reports
result and status in response of a command.

- Two data channels, called Read Channel and Write
Channel for data transport.

The upper layer process can be viewed as a producer of
commands and the msc.driver process as a consumer of commands.

A set of procedures, which handle the communication with the
msc.driver ©process, called communication procedures, are
supplied in OCCAM source.

8.2 View of the devices

One purpose of the msc.driver process is that the upper layer
process has a simplified view of the devices. Hardware
details, device parameters, handling of special cases etc. are
hidden in the msc.driver process. The devices should 1look
similar with respect to their controling, data structures and
response to facilitate their handling. The msc.driver
communication procedures use descriptive parameters:

- The class of a device.
- The type of a device.
- The number of a device.
- The type of a medium.
- The logical block of medium.

Devices will be distinguished in floppy drives and SCSI
devices because of the following reason: The concept of hiding
hardware details is much easier to implement for SCSI devices
than for floppy drives.

51

8.3 The class concept

Devices are categorized in so called classes. Devices of the
same class have nearly identical behaviour and response, and
can therefor be controled by the same set of procedures. At
this time there are 4 classes implemented:

Winchester
Floppy
Streamer

- Special

The class Special is a class of those commands, which are not
related to a certain device (e.g. clear() command).

8.4 The device type concept

Although. two devices of a class are nearly identical there
will be sometimes minor but important differences between
them. Inside the msc.driver process a sort of device is
represented by a set of descriptive constants (e.g. number of
tracks of a floppy drive etc.). This set is called device
record.

For every class there exists inside the msc.driver process a
small 1library of common used device records. The device
records are numbered starting from 0. The device type is the
number of a device record. This library will be updated from
time to time to include new sorts of devices. The type numbers
will be compatible with earlier versions of msc.driver.

Two devices are of the same type if they are descripted by the
same device record and such by the same device type.

class device device features
type
Winchestér 0 all SCSI winchesters
Floppy ¢ 2 Heads, 80 tracks, 250 KBit/sec

Streamer 0 all SCSI streamers

52

8.5 The device number concept

In every class the devices, which are physically present, are
assigned logical numbers from 0 to the maximum value, the
device numbers. E.g. if there are n winchesters connected to
the SCSI bus the logical winchester numbers must range between
0 and n-1.

A certain device is fully addressed by the pair
<class,device.number>. .

The device number must be distinguished from the physical
address of a device: The physical address is assigned once at
process start of msc.driver through the init() command.

8.6 The medium concept

To make use of orthogonally command structures all devices are
considered to have a changeable medium. So you can even for
winchesters send commands to load or unload its medium (which
is not considered as an error).

8.7 The medium type concept
The term medium is used e.g. for

- floppy disks

- fixed disk (!) of a winchester
- streamer cartridges

otical disks etc.

Analogous - to the type concept of devices there is a type
concept of storage media. That is because a certain device can
work on different kinds of media, which must be distinguished
of

- storage size

- formatting type etc.

Inside the msc.driver process a medium is represented by a set
of descriptive constants (e.g. physical sector size of a
floppy disk etc.). This is called medium record. In msc.driver
there exists for every class a small library of common used
medium records. This library will be updated from time to time
to include new sorts of media. The media records are
represented by numbers, so called medium types. The medium
type numbers will be compatible with earlier versions of
msc.driver. '

53

class medium medium features
type
Winchester 0 all SCSI winchesters
Floppy 0 2 sided, 80 tracks, 250 KBit/sec,

interleave 1:1, sector size 512 Byte
starting sector number is 0, 9 sectors
per track

1 same as 0. Starting sector number is 1.

Streamer -0 all SCSI streamers

8.8 The logical block concept

Every medium of a device has an individual physical block
length (e.g. a physical sector on a winchester). The physical
blocks are ordered in some unique way. So at this lowest level
the user sees a sequence of physical blocks numbered in some
unique way.

Definition: A 1logical block (of a certain device with a
certain medium) or block for short, contains exactly one or
more consecutive physical blocks. At this level the device is
considered to contain a sequence of logical blocks numbered
from 0 to some maximum value.

As a consequence there will be some physical sectors unusable
(those with the highest sector numbers) for many logical block
sizes.

The msc.driver process has the ability to work with individual
and dynamic block sizes:

-> Individual block size means, every physical device or
medium can be defined to work with its own block size,
e.g. two winchesters can have different block sizes.

-> Dynamical block size means, the block size can be changed
at run time (!) by issuing another init() command. The
user can experiment with block sizes to find one that
suits him best. Every given block length must be less or
equal to the internal buffer size of 64 K byte of the
msc.driver. .

54

Danger: The block size, with which a medium is written the
first time, must be the same for later read/write operations
to avoid corrupting the stored data. In general if you decide
to use another block size the data on a device or medium will
be lost. So the dynamic block size feature is useful during
tuning phases.

Example: The n sectors on a medium are numbered from 0 to n-
1. If the block size is defined to contain k sectors, then
there will be

L:= n/xk (integer division)
logical blocks. The rest of R := n mod k sectors will be

unused. The logical block with number B contains the sectors
from (B*k) to (B*k + k-1).

8.9 The buffer concept

It is assumed that the upper layer process organizes the
handling of the logical blocks, i.e it will implement one or
more class dependent buffer algorithms.

Definition: A buffer is an array of integers, which can hold
the data of a logical block. In OCCAM notation

[block.size] INT buffer :

This defines a buffer to hold blocks of up to 4*block.size
bytes.

Note: The logical block size can be less than the buffer size.
And

[10] [block.size] INT buffer :

defines a buffer array which can hold ten logical blocks.

Implementation examples:

1. =-> There is only one buffer, which every class uses.

2. => There is one buffer array, which all classes share.
This means the buffer array will contain in a mixed

manner logical blocks of different classes and devices.

3. => Every class has its own array of buffer arrays.

55

The communication procedures are designed for case 2. The
procedures are doing data transfer on the buffer array defined
as "BUffer". The buffer structure can be easily changed by the
programmer.

8.10 The internal protocol

The execution of a msc.driver command can be regarded as a
large sequence of elementary actions. Msc.driver makes an
internal protocol of every action it performs. This protocol
can be transferred to the upper layer by the get.protocol()
command.

Every elementary action has a unique number, the action
number. Every performed action is entered into a cyclical
buffer. Unsuccessful actions are marked. An entry of the
protocol buffer consists of four integers:

action code parameter 1 parameter 2 parameter 3

If bit 31 of an action code is set, then it is marked to be
unsuccessful.

Parameters 1 - 3 further describe the action code. They are
not explained for the user.

The command get.protocol() will return the protocol buffer and
for every entry a text string which explains the action.

Even after a system crash of the MSC board and after system
restart the old internal protocol is available for debugging
purposes of the crash. In this case the get.protocol () command
must be send before the clear() command. The clear() command
clears also the internal protocol.

8.11 Error handling
The general problem of error handling is the following:

To make use of the information hiding principle the upper
layer process has no knowledge of the internal state and
structure of msc.driver. This 1is allright as 1long as
everything works ok.

On the other side if something goes wrong with a device the
upper layer process wants more error information than just

56

"Bad Device Access", for example. There are often cases where
the error information must be quite detailed.

Another problem is the interpretation of error information.
Which layer makes the decision what a severe and what a
harmless error will be ?

Msc.driver handles these problems as follows:

->

->

Every minor action, which msc.driver will perform during
the execution of a command, has associated a so called
action number. If all actions of a command, and hence the
whole command, are successful, a so called ok result is
returned via the result channel. If some actions failed
then the action number of the first action is returned (see
"The result structure"). Additional result and status codes
are returned depending on the result.

Msc.driver makes no error interpretation, but gives a
description of the error.

57

9. msc.driver commands

9.1 The communication procedures

There is a small set of procedures in OCCAM source available
which manage the communication protocol with msc.driver. The
user of msc.driver is recommended to use these procedures, but
it is also possible to write one's own set. The procedures
are:

- clear (
- init (
- load (
- unload (
- read (
- write (
- w.format (
- s.format (
- f.format (
- verify (
= nop (...
- msc.driver.finish

- w.mode.sense

- w.mode.select.sector.1
- w.mode.select.parity

- reserve

- release

.
.
N N s N Vs Nt Nl o i s it

.
.
.

L K W W NP a3
L]]
.]
. . 3

Nt N N e’ N o

Every procedure uses the predefined communication protocol of
msc.driver. After a command has been send to the msc.driver
process data will be transferred and at last a result
structure will be returned, which contains in coded form the
success or some error number of the requested command.

At process start msc.driver performs nothing but is waiting
for the first command. At this state (awaiting a command) the
process uses no CPU time, because it waits for channel
communication.

The meaning of the result structure is explained in "The
result structure".

58

9.2 Parameters of the interface procedures

To simplify parameter description all parameters of the
interface procedures are explained here. Parameters "pid" and
"pri" are reserved for future enhancements.

pid process identifier, an 32 bit integer, by wich the
sender process of a command can be uniquely
identified.

pri must range between 0 and 1 and is the priority of a
command according to transputer convention: 0 =

low, 1 = high priority.

msc.scsi.addr is the SCSI bus address of the MSC board, which
is directly related to the priority for gaining the
SCSI bus. It must be between 0 (lowest priority)
and 7 (highest priority).

num.w is the number of winchester drives connected to the
SCSI bus. 0 means there is no winchester. Maximum
is 7.

num. f is the number of floppy drives connected to the

floppy bus. O means there is no floppy drive.
Maximum is 2.

num. s is the number of streamer drives connected to the
SCSI bus. 0 means there 1is no streamer drive.
Maximum is 2.

class is the class of a device.

device is the device number of a device. Must be between 0
and (number of devices - 1).

block.1l is the defined logical block length (in bytes) of a
device. It must be less or equal to the internal
buffer length of 64 K Byte and must contain exactly
one or more physical sectors of the medium.

type is the type of a device.

addr is the physical address of a device. SCSI bus
device addresses must be between 0 and 7. Floppy
drive addresses must be between 0 and 1. The type
parameter must be consistent to the physical device
with respect to addressing.

block ~ is the logical block number.

buffer is the buffer number.

med. type

pct

sector.1l

parity

59

is the type of the loaded medium. It is valid only
between load() and unload() commands.

Page control field for winchester mode sense
command. 0 <= pcf < 4. See "Mode Sense" Command of

your winchester manual.

Physical sector length for w.mode.select.sector.1 ()
command.

Parity parameter for w.mode.select.parity()
command.

60

9.3 The clear() - procedure
Invocation:
clear (pid , pri , num.w , num.f , num.s , msc.scsi.adr)

After the msc.driver process is started the first command to
be executed must be a clear() command to initialize general
and device independent variables. Device dependent variables
are set up by the init() command. The clear() command is also
used to tell the msc.driver process how many devices in every
class are connected to the MSC board. It performs a hardware
reset of the SCSI and floppy controler and after that the
controlers are checked for correct internal function.

clear() can be executed at any time. It tests the SCSI
controller and the floppy controller. All prior internal
states and data of msc.driver are lost.

9.4 The init() - procedure
Invocation:

init (pid, pri, class , device , block.l , dev.type , addr ,
lun)

After the clear() command an init() command must be executed
for every logical unit "lun" of every device in every class to
initialize device dependent variables. Medium dependent
variables are initialized by the load() command. The hardware
and software features of the device are considered to be
compatibel with type "type". A 1logical unit is physically
addressed by the pair (scsi address, logical unit number).
After the init() command has been issued for a logical unit,
it 1is subsequently addressed simply by it's device number
"device".

init() can be executed at any time. All prior internal states
and data of the msc.driver process associated with this device
are lost.

61

9.5 The 1load() - procedure
Invocation:
load (pid , pri , class , device)

The 1load() command assumes that a medium is inserted into
device "device" of class "class". Load() forbids medium
exchange until an unload() command is given which allows
medium exchange. Load() tries to find out what sort of medium
is loaded and returns over the result channel the medium type
of the medium.

The msc.driver process will use this medium type for all
subsequent operations on this medium until an unload() command
makes the medium type invalid.

Danger: There is no prevention for medium exchange on floppy
drives or even some SCSI devices. So msc.driver will not
notice the changing of the medium after a load() command has
been executed. This will result in intermixed and destroyed
data in the buffers and on the medium.

If the load() command cannot find out the medium number or if
no medium is inserted an appropriate result code is returned.

Note: The 1load() command must also be executed for devices
with a fixed medium, because of the general medium concept !

Load() does a test of the device without altering the medium
(if inserted). Other devices of this class or of other classes
are not influenced.

class performed actions by load()

WD33C93 internal function test

- waiting until motor speed ok

- SCSI Mode Sense :

- computing actual medium dependent variables
from mode sense data

= SCSI inquiry command

- winchester buffer test

- reading the first 10 logical blocks

- reading the last 10 logical blocks

- illegal sector read test

Winchester

62

Floppy - WD36C65 internal function test
- reads block 0 of floppy with different medium
type numbers, until correct (or no) medium type
number found.

Streamer to be defined.

9.6 The unload() - procedure
Invocation:
unload (pid , pri , class , device)

The unload() command in some way has the reverse effect of the
load() command. It allows medium exchange in device "device"
of class "class", but it doesn't check whether the medium has
really changed. Msc.driver no longer assumes a certain media
type associated with the device.

9.7 The read() - procedure
Invocation:
read (pid , pri , class , device , block , num , buffer)

The read() command reads the "num" numbers of blocks starting
with logical block "block" from the device "device" and puts
it into the buffer "buffer". The block length is device
dependent as defined by the init() command. The read is
physically done in the device.

9.8 The write() - procedure
Invocation:
write (pid , pri , class , device , block , num , buffer)

The write() command sends "num" logical blocks in buffer
"buffer" to the device "device" where it overwrites data
starting at block "block". The block 1length is device
dependent as defined by the init() command. The write is
physically done in the device.

63

9.9 The w.format() - procedure
Invocation:

w. format (pid, pri, device, cdbl, cdb2, cdb3, cdb4, cdbs,
buffer , list.l)

The w.format() command formats the winchester "device". In
general there is more than one way to format a winchester
(using the primary and/or growing defect list). So the

procedure gets 5 integer parameters, called cdbl - cdb5, which
msc.driver will convert to 5 bytes and insert them 1nto the
Command Descriptor Block (CDB Byte 1 - 5) of the SCSI command,

which is send to the winchester. The procedure will always
send the 1list in buffer "buffer" of length "List.1l" to
msc.driver, whether it will be used there or not. The block
contains the appropriate defect 1list, if any. The 1n1t()
command can be used to temporarily deflne a block size of
appropriate size to hold the lists.

The user must handle the defect lists. For explanation of the
various kinds of formattlng see "Command Description for
direct Access Devices" in the ANSI SCSI manual.

W.format() does no verification. This must be done with the
verify() command.

After the procedure has been started, it returns when the
winchester has been formatted.

To change the physical sector size of a winchester, the
w.select.sector.1() command must be issued and after that the
w.format () command.

9.10 The f.format() - procedure
Invocation:
f.format (pid , pri , device , medium.type)

The f.format() command assumes there is a floppy disk inserted
into floppy disk drive "device". The floppy will be formatted
according to the parameters of "medium.type". The floppy is
not verified. A write protected floppy will return
"not.loaded" as medium status (according to WD37C65). A
successful f.format() = will return medium type
"no.medium. type". :

64

9.11 The s.format() - procedure

To be defined.

9.12 The verify() - procedure

Invocation:

verify (pid , pri , class , device , media.type)

The verify() command checks whether all physical sectors on a
medium are readable. The whole medium is read, but no data
transfer is involved. The purpose of the verify() command is
to find out bad sectors. Result structure is the same as the

read() command, except that result integer 3 contains the
media type.

9.13 The msc.driver.finish() - procedure

Invocation:

msc.driver.finish (pid , pri)

This command tells the msc.driver process to finish itself.
This command is normally not used except for test purpose,

because the msc.driver process is assumed to run steadily. No
actions on devices are performed.

9.14 The nop() - procedure
Invocation:

nop (pid , pri)

The nop() command has no effect. The communication protocol is
executed and msc.driver returns status ok.

65

9.15 The w.mode.sense() - procedure

Invocation:

w.mode.sense (pid , pri , w.nr , pcf , buffer)
W.mode.sense() reads from the winchester all (up to 4) sets of
mode sense data. The pcf value (page control field) defines
which set of mode sense pages is returned as a block into
buffer "buffer". So to get all 4 sets of mode sense pages you
have to issue w.mode.sense() 4 times with pcf=o0..3.

The first 4 byte integer in the returned block contains the
length in bytes of the mode sense data. The bytes after the
first integer contain the mode sense data exactly as the
winchester has supplied them.

A side effect of w.mode.sense() is to perform internally a
load() command.

9.16 The w.mode.select.sector.1l() - procedure

Invocation:

w.mode.select.sector.1l (pid , pri , w.nr , sector.l)
W.mode.select.sector.1() enables the wuser to change the
physical sector length of a winchester. The specified sector

length comes into effect only after a w.format() command.
Sector.l specifies the length in bytes.

9.17 The w.mode.select.parity() - procedure
Invocation:
w.mode.select.parity() (pid , pri , w.nr , parity)

w.mode.select.parity().

66

9.18 The get.protocol() - procedure
Invocation:

get.protocol (pid , pri , buffer.size , buffer , init ,
more)

Msc.driver will copy its internal protocol into the buffer
"buffer". See "The internal protocol™. One entry of the
protocol occupies 64 bytes:

Byte 0 - 39: Text string describing the action
Byte 40 - 43: The action number (4 byte integer)

Byte 44 - 47: Parameter 1 (n)

Byte 48 - 51: Parameter 2 (")

Byte 52 - 55: Parameter 3 (")

Byte 56 - 63: -unused will be O
buffer.size is the size of buffer "buffer". In general the
total protocol will fill more than one buffer. In this case
the procedure returns the boolean variable "more" = TRUE,
whether there are more protocol entries, which must be
transferred by another get.protocol - call. "more" = FALSE

indicates that the last entries have been transferred.

The first get.protocol() call must initialise the protocol
transfer by setting "init" to TRUE. This first call will not
fill entries into the buffer. Subsequent calls must set init
to FALSE, so get.protocol() will return filled buffers.

9.19 The get.params() - procedure
Invocation:
get.params (pid , pri , class , device , buffer)

After loading a medium and sending the 1load() command, the
user will get some parameters describing the medium and the
device by sending the get.params() command. Get.params() will
return a block into buffer, the first words containing some
information:

Word number Device / medium parameter
0] psysical sector length in bytes

1 total number of sectors on medium
2 total number of blocks (depends on block size)

67

9.20 The start.stop.unit() - procedure

Invocation:

start.stop.unit (pid , pri , class , device , start)

Some direct access devices, mainly winchesters, can switch on
and off the spindle motor. This may be used to lengthen the

life time of the drive. The boolean start causes the motor to
run, when true. The motor will halt otherwise.

9.21 The send.command() - procedure
Invocation:
send.command ([] INT command)

The array paramater "command" is transferred to the msc.driver
process, where it is interpreted as a command.

9.22 The reassign.blocks() - procedure

Invocation:

reassign.blocks (pid , pri , class , device , buffer)

This procedure is used to reassign bad sectors of devices,
normally winchester devices. Bytes 2 and 3 in buffer "buffer"

comprise a list length (defect list) of bytes. This list sends
the msc.driver process to the device. Zero length is allowed.

9.23 The reserve() - procedure

Invocation:

reserve (pid , pri , class , device , free)

The communications procedure tries in a loop to reserve the

device. If this will not be successful for 1 minute, then
result parameter will be returned false.

9.24

68

The release() - procedure

Invocation:

release (pid , pri , class , device)

The

device "device" is released.

9.25 Time relationship of commands

After the msc.driver process has been started, commands in the
following order must be issued:

-2

The first command must be a clear().

After that for every device in every class an init() must
be issued.

After that, before accessing the medium of a device, a
load() must be executed (with inserted medium of course) .

Now the medium of the device can be accessed by giving
read(), write() and verify() commands in any order.

Medium changes are only possible after an unload() and
before a load() command.

The format() command needs no proir load() command.

69

10. The communication protocol

A simple protocol is used to communicate with the msc.driver
process. This protocol is hidden in the communication
procedures, but will be explained here.

One aspect 1is protocol safety. For example the upper layer
process wants to read a block and sends a miss-spelled
command. Then it waits for the data on the read channel. The

msc.driver rejects the command. If it would not send any data
the upper layer process will hang.

Definitions
A command is a small integer array of variable length,’which
contains the requested action for the msc.driver process and

parameters, if any.

A result is a small integer array of variable length, which
contains at least two integers:

- The process identifier. To this process the result must
be transferred. The process is waiting for the result.

- The error code says whether or not the execution of the

command was successful or produced a catastrophic
failure.

10.1 Channel types

All four communication channels of msc.driver are defined to

transfer dynamic arrays, i.e. first the array length is

transferred and then the array:

The command and result channels are defined as following:
PROTOCOL command.type IS INT :: [] INT :

The data channels are defined:

PROTOCOL data.type IS 1INT :: [] INT

70

The maximum array sizes msc.driver can receive or will send:

Channel Maximum Array Size

c.command 32 Integers

c.result 32 Integers

c.read 16384 Integers (= 64 K Bytes)
c.write 16384 Integers (= 64 K Bytes)

10.2 The phases of communication

Communication is always initiated by the upper layer process.

1. Step:
2. Step:
3. Step:
4. Step:

The upper layer process sends a command over
channel c.command. The msc.driver process, waiting
for a command, receives the command.

After the command transfer is done, there is always
a data transfer over the c.read channel. If there
is no read data involved a null array is send by
msc.driver.

After the read data transfer is done, there is a
data transfer over the c.write channel. If there is
no write data a null array must be send by the
upper layer.

The msc.driver process sends a result over the
c.result channel. After that it waits for the next
command. The wupper layer process receives the
result. The protocol is done.

The msc.driver process decodes the command between steps 1 and
2. If there is read data involved command execution takes
place after command decoding and before step 2. If write data
is involved command execution takes place between step 3 and

4.

The procedure dummy.c.read() is used to receive null, wrong or
unexpected data just to fulfill the protocol phases.

The procedufe dummy.c.write() is used to send null data just
to fulfill the protocol phases.

1
v

send
command

v

receive
(null)
data

\'4

send
(null)
data

v

receive
result

S

The
upper
process

71

command

write data

result

—
v

receive
command

v

send
(null)
data

\Y%

receive
(null)
data

v

send
result

L

The
msc.driver
process

Timing of protocol execution.

72

10.3 The result structure

A result is a small sequence of integer values in the array
"result". Its length is 1 at least. The length is contained in
the variable "result.l1l". The interpretation of a result is
command dependent. After the execution of a command result(]
and result.l are valid.

The first integer of result (result [0]) contains the
identifier of the process, to which the result belongs.

result [1] has a common function for all results. It contains
the error number of the first error of the internal protocol,
or 0 if no error occurred.

If the command performed well, result [1] = 0 , meaning "ok
status". Otherwise the first unsuccessful action number of the
failed command is returned. The meaning of action numbers is
shown in "Action Numbers". The procedure wait.for.result()
sets the global variable "ok", if the received result is
successful.

If there are more than two integers in result , the meaning of
the rest is command and class dependent:

Winchester result structure

If the msc.driver process performs a winchester command
successfully, the result length is 2 and result [1] = O.

If anything is to be reported, the result structure has the
following form:

result [0] : process identifier

result [1] : internal msc.driver action number
result [2] : sense key

result [3] : first byte of request sense data

result [4] second byte of request sense data

73

result [2] contains the sense key of the winchester (according
to the ANSI SCSI manual), which caused the malfunction:

result [2] = 0: No error.

result [2] = 2: Winchester not ready. Perhaps the motor has not
the correct speed.

3: Medium error. The winchester can not read or
write a physical sector (bad sector).

result [2]

etc.
After that the request sense data are following: The integer
result [3] contains the first sense data byte and so forth. In
the case of a medium error the request sense data normally
contains the bad sector number (see your winchester manual).

Floppy result structure

Floppy commands return a result structures of length 2 and 3.
If msc.driver performs a floppy command successfully result
[1] has the value "medium.ok" (=0).

If anything is to be reported, the result structure has the
following form:

result [0] : internal msc.driver action number
result [1] : Medium status
result [2] : Medium type

Medium Status Values
Medium status has the following meaning:

Floppy command was successful, medium is inserted
No medium is loaded ’
Medium is write protected

Sector not found

CRC Error

Medium is not formatted

b WO

10.4 The msc.driver library

There is a fold in the msc.driver software package, called
mscdrive.tsr, which contains the msc.driver 1library. The
interface procedures and the msc.driver source use this
library for command and result constants etc.

74

10.5 Action Numbers

Action numbers and their meaning can be seen in the SC
(separate compiled module) "text.of.action" in the source code
of the upper layer of the msc.driver software package. The
action numbers are normally not needed by the user.

e

75

PART III Installation

1. Hardware Installation

The MSC board is delivered with one of two kinds of
backplanes:

For operation inside a PC:

The SCSI-PC backplane. See sheet "SCSI-PC Adapter" for
mounting. This needs a BBK-PC adapter. The MSC and the BBK-PC
are connected with their 96-pin DIN connectors, and the SCSI-
PC adapter 1is plugged onto the BBK-PC adapter. The 4 MSC
links, the SCSI bus and the floppy bus are routed through the
8 link connectors of the BBK-PC to the SCSI-PC adapter.

For all other environments:

The Multicluster backplane, which interfaces directly to the
96 pin DIN connector of the MSC. It provides 4 10-pin
Multicluster 1link connectors, 1 50-pin SCSI connector and 1
34-pin floppy connector.

Normally; the first steps to test the operation of the MSC
involves a winchester:

1.1 PC users

Mount the MSC, the BBK-PC and the SCSI-PC adapter (if not

already done).

- Make sure, the BBK-PC is correctly set up for operation
with busless transputer modules under MULTITOOL. No other
adapters in the PC should interfere with the BBK-Q
adresses.

- The link speed of MSC and BBK-PC must be the same. Connect
link 0 of the MSC (which is the top link connector on th
SCSI-PC adapter) with the BBK-PC 1link via a flat 1link
cable.

- Connect the 50-pin SCSI bus flat cable with one end to the
SCSI connector on the SCSI-PC adapter and the other end to
the winchester. Note the orientation of pin 1. The
winchester must have it's termination resistors installed
in this configuration. The winchester SCSI address must be
0.

- Insert the BBK-PC into a free slot of your PC.

- Apply power to your PC and to the winchester.

- See '"Software Installation".

76

1.2 Using the MULTICLUSTER backplane

- Connect a Ground and a 5 Volt power cable to the
backplane.

- Insert the MSC into the backplane.

- Connect 1link 0 of the MSC (top link connector at the
backplane) to the I0OS-1 module or to the bus bridge head,
you are using (BBK-PC, BBK-1, etc.). Make sure that the
MSC and the bus bridge head at the other end operate at
the same link speed. The bus bridge head must be set up to
run MULTITOOL on the MSC transputer.

- Connect the 50-pin SCSI bus flat cable with one end to the
SCSI connector on the backplane and the other end to the
winchester. Note the orientation of pin 1. The winchester
must have it's termination resistors installed in this
configuration. The winchester SCSI address must be O.

- Apply power to your host, to the MSC and to the winchester.

- See "Software Installation".

30 7 3839S[EBET "6 Ren ayeq

oA
=

OO0 " OHOdISIS a
JBQUNN juawnsoQ 8z T

«“a3depy — 5d - ISOS
21374

Gs4Sey 00TS-a
8E£E *J3S waYSTianp

HAWD D31ASYYd

Jsydepy Dd-Mgg

HUTT 96DA 969A

PUe0og DOSW

|

—— C._L ; sidwd asqro

¥ verdepy od-1s0s

Jo3daUUG) | uoydBuUUSH J403dauu0)
HUTT IS0S Addo 4

ISR - NPt |

“®3depg - Od - ISDS 34y 4o bujizunoy

78

1.3 Software installation
When the hardware is set up, you can start MULTITOOL on the
MSC board.

PC users:
- Get the "File Utilities" of MULTITOOL.

- Create an empty fold where the msc.driver software shall

reside.
- Insert the discette labeled '"msc.driver" into drive A:

- Start function "COPY IN" of the File Utilities by

pressing ALT-8.

- Set the "DestinationFileName" of the "directory

parameters" to '"mscdrive".

- Press the "Exit Fold" - key: The msc.driver software will

be copied into the new fold. Now see "Starting a test".

MULTITOOL users:
- The same as for PC users, except that the "copy IN"
replaced by a "STREAM RETRIEVE".

Starting a test:

is

- After the copy is ok, enter the fold and get and run the

EXE. A menu should appear.
- Execute command "Help".
Execute command "Clear". Set the following parameters:

"Process ID" to O
"Priority" to O
"Number of winchesters" to 1
"Number of floppies" ‘to 0
"Number of streamers" to O
"MSC SCSI address" to 7

blank.

Execute the command "Test". Answer the first question with

Now the msc.driver initialises and loads the winchester using
different block sizes as printed. "W" means writing some
sectors, "R" means reading the written sectors and "v" means a
compare of the written and read sectors. The test can be

aborted by pressing any key.

79

T414/T800 are trademarks of INMOS Group of Companies
INMOS transputer is a trademark of INMOS Group of Companies

OCCAM is
WD33C93 is
WD37C65 is
X20C18 is
PAL is

PC/AT is

P Yo eE

trademark
trademark
trademark
trademark
trademark
trademark

of
of
of
of
of
of

INMOS Group of Companies
Western Digital Corporation
Western Digital Corporation
Xilinx Inc.

Monolithic Memories Inc.
IBM

MTM-PC : Software Controlled Configuration

The MTM-PC has software controlled 1link connections via C004
linkswitches. This allows to configure the processors and the
external link connectors of the board automatically by Helios or
the configurer/loader of MEGATOOL's Occam Utility Set before or

during a session.

The file "MTM-PC.CDE" on the supplied disc contains the transputer
code to configure the MTM-PC board with its C004 linkswitches from
DOS 1level according to a default configuration structure as shown
below. The program has been written in OCCAM under MEGATOOL and
made bootable to be used with the alien file server (AFSERVER)
which is an executable DOS program and supplied too. The program
assumes the transputer A of the board connected via its 1link 0 to
the PC-link section and via its link 1 to the configuration input
of the €004 linkswitches (standard jumper configuration of the
MTM-PC) . To configure the MTM-PC board with the default
configuration, the MTM-PC.CDE file has to be send to that
transputer using the following command from DOS level :-

AFSERVER -:b MTM-PC.CDE

This will reset the transputer and load the file MTM-PC.CDE into
the processor. The program automatically starts and gives you
some information about the configuration process on your screen.
The alien file server used to boot the transputer is described in
full in the server part of the MEGATOOL documentation. See below
for a short description of how to invoke the AFSERVER.

~—

Default configuration

The default configuration of the MTM-PC with the mentioned
MTM-PC.CDE program builds a pipeline as follows :-

PC-Link

-
EO 3 A 1 C004
_

-

N

The notation of the processors and the connectors correspond to
the technical documentation of the MTM-PC board.

Note that the connections between transputer A and the PC-Link as
well as the C004 configuration input are hardwired by use of the
appropriate jumpers JP21 and JP22 on the MTM-PC module.

Alien file server

The program to boot and 1load the transputer is the alien file
server (AFSERVER) which is an executable DOS program and part of

the MEGATOOL release for MS-DOS/PC-DOS systems. It's full
description can be found 1in the server part of the MEGATOOL
documentation. In this section only the necessary options for

invoking the alien file server for configuring the MTM-PC will be
mentioned.

The syntax of the alien file server-call is as follows :-
AFSERVER [command.line]
where command.line is defined as follows :-

command. line = option
' | option command.line

option = - options
| / options

options = :b boot.file.name

:1 [#]link.address

:1
boot.file.name = standard DOS file name
link.address = decimal or hexadecimal number

Boot Transputer option (:b)

If the option ':b' is used the server will try and use the given
file name after the ':b' to boot the transputer with. If the file
name is not a valid file or the server is unable to load the file,
appropriate error messages are given. When the server boots up,
the transputer is reset. If this option 1is not specified the
server will try and communicate with a program that has been
previously loaded onto the transputer. If no program is loaded on
the transputer, the server will hang-up. This is because the
server does not test the board to see if a program is resident.

Link Address option (:1)

The use of the ':1' option enables you to change the address which
the aerevr wuses to communicate with the transputer board. If a
'4' is used as a prefix of the following number then the number is
taken as a hexadecimal number. If no number is specified an error
will occur.

The option need only be used to change the link address of the
board to other addresses than the default ones, as the server
defaults to #150 for use with AT-like systems or #300 on XT's.

N

Server Information option (:1i)

If the option ':i' is used the server will display a copyright
message and it's version date.

Installation

The supplied disc (360 Kb, IBM-PC format) contains the software in
copy format. To install the programs on your harddisk you can
copy it back to any directory you want. Here we assume a
subdirectory called 'MTM-PC' which is directly below the root
directory. To create the subdirectory turn to the root directory
of your system and issue at DOS level :-

MD \MTM-PC

Then enter the following command to copy all the files from the
disc to that subdirectory :-

COPY A:*.,* \MTM-PC

To configure the MTM-PC board from any directory the following
command can be used :-

\MTM~PC\AFSERVER -:b \MIM-PC\MTM-PC.CDE

If you have installed the programs in other directories change the
appropriate pathnames in the above command.

See the AFSERVER description above for other sometimes necessary
options like setting the linkaddress.

—

MTM-PC : Software Controlled Configuration

The MTM-PC has software controlled 1link connections via C004
linkswitches. This allows to configure the processors and the
external link connectors of the board automatically by Helios or
the configurer/loader of MEGATOOL's Occam Utility Set before or

during a session.

The file "MTM-PC.CDE" on the supplied disc contains the transputer
code to configure the MTM-PC board with its C004 linkswitches from
DOS level according to a default configuration structure as shown
below. The program has been written in OCCAM under MEGATOOL and
made bootable to be used with the alien file server (AFSERVER)
which is an executable DOS program and supplied too. The program
assumes the transputer A of the board connected via its 1link 0 to
the PC-link section and via its 1link 1 to the configuration input
of the €004 1linkswitches (standard jumper configuration of the
MTM-PC) . To configure the MTM-PC board with the default
configuration, the MTM-PC.CDE file has to be send to that
transputer using the following command from DOS level :-

AFSERVER -:b MTM-PC.CDE

This will reset the transputer and load the file MTM-PC.CDE into
the processor. The program automatically starts and gives you
some information about the configuration process on your screen.
The alien file server used to boot the transputer is described in
full in the server part of the MEGATOOL documentation. See below
for a short description of how to invoke the AFSERVER.

Default configuration

The default configuration of the MTM-PC with the mentioned
MTM-PC.CDE program builds a pipeline as follows :-

PC~Link

._!
EO 3 A 1 0
B Co004

Uo

[

-

I

The notation of the processors and the connectors correspond to
the technical documentation of the MTM-PC board.

Note that the connections between transputer A and the PC-Link as
well as the C004 configuration input are hardwired by use of the
appropriate jumpers JP21 and JP22 on the MTM-PC module.

Alien file server

The program to boot and 1load the transputer is the alien file
server (AFSERVER) which is an executable DOS program and part of

the MEGATOOL release for MS-DOS/PC-DOS systems. It's full
description can be found in the server part of the MEGATOOL
documentation. In this section only the necessary options for

invoking the alien file server for configuring the MTM-PC will be
mentioned.

The syntax of the alien file server call is as follows :-
AFSERVER [command.line]
where command.line is defined as follows :-

command.line = option
| option command.line

option = - options
| / options

options = :b boot.file.name

:1 [{#]1link.address

:i
boot.file.name = standard DOS file name
link.address = decimal or hexadecimal number

Boot Transputer option (:b)

If the option ':b' is used the server will try and use the given
file name after the ':b' to boot the transputer with. If the file
name is not a valid file or the server is unable to load the file,
appropriate error messages are given. When the server boots up,
the transputer is reset. If this option is not specified the
server will try and communicate with a program that has been
previously loaded onto the transputer. If no program is loaded on
the transputer, the server will hang-up. This is because the
server does not test the board to see if a program is resident.

Link Address option (:1)

The use of ‘the ':1' option enables you to change the address which
the aerevr uses to communicate with the transputer board. If a
"#1' is used as a prefix of the following number then the number is
taken as a hexadecimal number. If no number is specified an error
will occur.

The option need only be used to change the link address of the
board to other addresses than the default ones, as the server
defaults to #150 for use with AT-like systems or #300 on XT's.

Server Information option (:1i)

If the option ':i' is used the server will display a copyright
message and it's version date.

Installation

The supplied disc (360 Kb, IBM-PC format) contains the software in
copy format. To install the programs on your harddisk you can
copy it back to any directory you want. Here we assume a
subdirectory called 'MTM-PC' which is directly below the root
directory. To create the subdirectory turn to the root directory
of your system and issue at DOS level :-

MD \MTM-PC

Then enter the following command to copy all the files from the
disc to that subdirectory :-

COPY A:*.* \MTM-PC

To configure the MTM-PC board from any directory the following
command can be used :-

\MTM-PC\AFSERVER -:b \MTM-PC\MTM-PC.CDE

If you have installed the programs in other directories change the

appropriate pathnames in the above command.
See the AFSERVER description above for other sometimes necessary

options like setting the linkaddress.

—_

