
Efficient Implementation of Java
on the ST20

Stuart Menefy

stuart@bristol.st.com

SGS-THOMSON Microelectronics Limited
1000 Aztec West

Almondsbury
Bristol BS12 4SQ
United Kingdom

Abstract

Recently the World Wide Web has become far more interactive through the use of
Java, Sun Microsystems programming language, which allows programs to be
executed by a WWW browser. To make these programs portable across a wide range
of architectures, they are downloaded in the form of ‘byte-codes’, the instruction set
for a virtual machine.

Current implementations interpret these bytes-codes, however we believe that SGS-
THOMSON’s ST20 CPU will be able to translate the byte-codes into native
instructions as the program is downloaded, and then execute them at full speed.

The paper will discuss some of the issues involved in performing the translation from
byte-codes into native ST20 instructions, and how this could be used to form the heart
of an Internet terminal or Network Computer.

ion of
ich
real-

his is
g the
s of
red in

ible to
such
d thus

ely
makes
virtual

ions
ilation
his is
port a

ake it
y the
hich
orld

ternet
ility,
1 Introduction

Much of the recent growth in the Internet has been brought about through the introduct
the World Wide Web. This has proved to be a great way of distributing information wh
consists of text or simple graphics, however for more advanced content which requires
time updates, or interaction with the user, it is severely limited. One way to overcome t
to download a program to the user’s computer, which is then responsible for displayin
data. This gives the content author great flexibility. However to do this effectively, issue
portability, security and performance must be addressed, all areas which were conside
the design of the language Java, and its execution environment.

Once the issues of downloading code have been addressed, it becomes poss
envisage the downloading of whole applications. These could provide simple facilities
as word processing or e-mail, on a machine which only has to run a simple browser an
does not need the complexity or cost of a personal computer.

SGS-THOMSON Microelectronics provide a family of microprocessors collectiv
called the ST20, which are based around a CPU core and various peripherals. What
the ST20 interesting is that the CPU architecture shares many features with the Java
machine, making it possible to implement Java efficiently.

This paper is divided into six sections. Following this introduction, the next two sect
are overviews of Java and the ST20. The main part of the paper describes the comp
process which is used to convert a Java application into native ST20 instructions. T
followed by a discussion of some other features of the ST20 which can be used to sup
Java execution environment, and finally the conclusion.

2 Java

Java is a programming language, similar to C++, but with many features changed to m
easier to write correct, reliable programs. What makes Java interesting is not onl
language itself, but that it was designed to execute in a particular environment, in w
security and portability were major issues. This is exactly the situation found on the W
Wide Web, and why Java has been proposed for this area[1].

2.1 Java and the World Wide Web

Java is designed to allow users to download arbitrary programs from anywhere on the In
and run them on their local machine, without having to be concerned about compatib
portability or security. It achieves this in several ways:

• Java has been designed to make writing reliable programs easier. There is no
support for pointers, array accesses are fully checked, and dynamic memory
is garbage collected.

• Java is compiled into an architecture neutral object file format, which can be
run on any system which supports a Java execution environment.

• The execution environment is strictly defined, with no implementation
dependant features. Every system should provide the full run-time library.

• Every program is verified when it is downloaded, to ensure that it only
accesses resources which are explicitly allocated to it, and at run time, file and
network access is strictly controlled[4].

For more details on the Java language, see [2].

s its
uld be

tion

dded
nd a
ce,
T’s,

id
2.2 The Java Virtual Machine

The Java Virtual Machine (VM)[3] is a mythical CPU which executes Java byte codes a
native instruction set. This machine is the target for the Java language compiler (and co
for any other language, within the constraints of the VM definition).

This machine has several interesting features:

• A 32 bit architecture, with instructions defined to operate on bytes, 16, 32 and
64 bit integers, and 32 and 64 bit IEEE floating values. 64 bit numbers occupy
two adjacent locations (MSB/LSB ordering is undefined, and should be
impossible to determine).

• A zero operand instruction set; all expressions operate on a stack, the offset
into which is implicit in the instruction. The compiler generates code for an
arbitrarily deep stack, the maximum depth of which is recorded in the object
file.

• Each function has a local variable area, which is addressed using integer
offsets from its base.

• All inter-module calls are implemented as methods of an object. Parameters
for the call are loaded into the stack, and stored into the called method’s local
variable area.

• Exception handling is defined as part of the instruction set and run-time.

• Multi-threaded applications are supported through methods in the run time
library and special synchronisation instructions.

When combined with the core run-time library, the VM provides a portable execu
environment for Java applications.

3 ST20

The ST20[5],[6] family is a range of 32 bit microprocessors designed for use in embe
applications. Each is based around a micro-core which provides a 32 bit CPU, a
collection of on-chip peripherals which typically include an external memory interfa
interrupt controller, fast SRAM or cache, and application specific blocks such as UAR
IEEE 1284 interface or DVB descrambler.

Features of interest in the context of this paper include:

• A small general purpose register set organised as a three deep stack (Areg,
Breg andCreg).

• A very compact instruction set in which most instructions are one byte long.
Expressions take no arguments and implicitly operate on the register stack.

• A local workspace1 addressed as offsets from a dedicated workspace pointer
register. Later versions of the ST20 core cache the bottom (active) portion of
the workspace providing 0 cycle loads in many cases.

1. The workspace takes the place of a stack on other processors. The term workspace is used to avo
confusion with the register stack (and the Java stack).

virtual
to give

. This
er to
native

ss at
cause
n the
delay
alled.
piler

The
nction

ing
age,

piler
the
er for

rrent
ased
f the
ance
led

ather

the
k in

.

• A microcoded scheduler which provides a fast context switch (500nS) and
support for extending this with a software OS by trapping certain scheduling
operations.

As can be seen, there are many areas in which the ST20 is close to the Java
machine. The remainder of this paper discusses how these features can be exploited
efficient execution of Java programs.

4 Compiling Java Byte Codes

The first generation of Java execution environments interpreted the Java byte codes
allowed the interpreter to be portable, but execution speed was a problem. In ord
efficiently execute Java bytes codes, they must be translated into the processor’s
instruction set.

Java’s object oriented structure lends itself to loading the program in blocks, one cla
a time. This is ideal when a program is being loaded over a slow network connection, be
the program can start executing with just a minimum amount of code loaded, and pull i
remainder on demand. This can be extended by allowing the execution environment to
translating the byte codes into native instructions until just before a classes method is c
This has been termed just-in-time (JIT) compilation, and requires a rather different com
from traditional ones.

A JIT compiler must execute quickly, while still generating reasonable quality code.
compilation process must be invisible to the user, if the system pauses on entry to a fu
while the compiler is called, then it will be useless. However, many of the time consum
activities which a compiler normally has to perform such as parsing the input langu
building a symbol table and syntax checking have been performed by the Java com1,
which allows the JIT compiler to perform many of its optimisations in advance, so
compiler simply has to glue together many precompiled instruction sequences. Howev
optimal code things get slightly more complicated.

4.1 Development

Development of the Java execution environment for the ST20 will start from the cu
interpreter produced by Sun Microsystems, which is written in C. This should allow a ph
approach to be used, first porting the interpreter, which will then allow development o
run-time libraries to be carried out at the same time as work on improving the perform
of the VM. The final system will consist of a mixture of pre-compiled C and JIT compi
Java. These two environments can call each other freely, to support Java’snative methods,
and some of the complicated Java byte codes will be compiled into calls to C functions, r
then implemented in-line.

4.2 Memory layout

Deciding how to store the Java stack and local variables in memory is crucial to
implementation of the virtual machine. In particular, the representation of the stac
memory must be simple, as most instructions push or pop the stack.

1. The byte code verifier will also guarantee that the program is still correctly formed when it is loaded

, one
ck, and
.
ation.

ethod
tween
k grows
ed in

the
ns,

ust be
k and
te
ata
when
ister
, and

ode.
adjust
ointer
from

single
light

T20
words
seful
As shown in figure 1, the interpreter stores the local variables and stack in a frame
per method. Several frames are stored together in a data structure called a JavaSta
these are linked together to allow stack extension, without requiring hardware support

JavaStack and JavaFrame are the C structures which contain administrative inform
Storing JavaFrame between the variables and stack which it refers to allows m
parameters to be passed without having to copy the data, except when moving be
stacks. Both the variables and stacks are accessed as C arrays, so effectively the stac
up, with the top of the stack being at the higher address. The stack pointer is maintain
the JavaFrame.

For development purposes it is desirable for the compiler to be compatible with
interpreter. However following this exactly would restrict the opportunity for optimisatio
so, in several stages, a more ST20 sympathetic implementation should be brought in.

To minimise the overhead of accessing the stack, the stack and local variables m
mapped into the ST20’s workspace. This makes it very simple to access both stac
variables, short, fast instructions such asldl (load local) can be used, which opera
implicitly on the local workspace. In a first version this will use exactly the same d
structures as the interpreter, simply switching from the normal C stack to the Java stack
executing compiled Java code. This will simply involve setting the workspace pointer reg
to point to the base of the current frame as part of the preamble to the compiled code
swapping it back before executing C code.

There is no need to maintain an explicit stack pointer while executing compiled c
The compiler can simply track the current stack depth as instructions are compiled, and
the address used to access a given stack location accordingly. Thus the stack p
maintained in the JavaFrame structure only needs to be updated when returning
compiled code to C.

In a later version the need to switch stacks may be removed altogether, using a
stack, which will contain a mixture of both C and Java stack frames. This should give a s
performance gain, and reduce memory consumption.

One problem with following the interpreter memory layout is that because the S
architecture uses a falling stack, the workspace cache, which caches the ‘bottom’ 16
of the workspace, will hold the arguments and local variables. It would be much more u

JavaStack

JavaFrame

stack

args

variables

JavaFrame

stack

args

variables

JavaStackJavaStack

top

bottom
push

Figure 1 Interpreter stack and variable layout

s are

f

ined

k[2]
ding

to four,
s two
ck is at

ctive

ns
end,
if they could hold the active portion of the Java stack. To overcome this three change
required:

• The layout of a frame must be reversed, so that the stack is at the bottom of the
memory and not the top.

• The stack, and therefore the stack frames within the JavaStack structure, must
fall rather then rise.

• The workspace pointer must track changes to the Java stack pointer so that the
currently active portion of the stack remains in the cache. Changing the
workspace pointer involves generating anajw instruction, so workspace
should be allocated and freed in blocks, with some hysteresis, to avoid
repeatedly expanding and contracting the stack.

This means that given the size of workspace allocated for the stack (stack_size) and
the current depth of the stack (stack_depth), the offset of the bottom (the active part) o
stack is:

stack_base = stack_size - stack_depth

and the offset of a stack item (numbered from 0 for the bottom of the stack) can be determ
by:

stack_offset(item) = (stack_size - stack_depth) + item

Similarly a variable is located at offset:

variable_offset(item) = stack_size + item

For example, Table 1 shows the effect of the instruction sequence:

bipush 4
iadd

when the stack initially holds three values (top to bottom: 8, 10, 20, indicated by stac
down to stack[0]) and five words have been allocated for the stack. Initially stack[0] (hol

20) is at workspace 2. The effect of pushing value 4 causes the stack depth to increase
and the value 20 is now at stack[1], but remains at address 2. Similarly the addition pop
values and pushes one, so the stack returns to a depth of three, and bottom of the sta
location 2.

4.3 Registers

It is intended that the ST20’s register stack will in effect act as a cache for the currently a
portion of the Java stack. Usually this will be the bottom three elements of the stack, soAreg
will hold stack[0],Breg stack[1] andCreg stack[2]. This means that many Java instructio
can map directly onto their ST20 equivalents, and many sequences will butt end to
without any register shuffling required.

Table 1: Stack usage example

WS Initial
value

After
bipush 4

After
iadd

4 stack[2]: 8 stack[3]: 8 stack[2]: 8
3 stack[1]: 10 stack[2]: 10 stack[1]: 10
2 stack[0]: 20 stack[1]: 20 stack[0]: 24
1 stack[0]: 4
0

three
nto the
f the

n
rectly,

rely
to be

into
. In

essary.
ation

uence
ine

r stack

6

However, because the Java stack is of arbitrary depth, and the ST20 stack is only
deep, the generated code must also ensure that instructions which push new values o
stack do not result in valid register contents being lost, and similarly popping values of
stack may mean that stack entries further down the stack need to be reloaded.

For example, the code sequence:

static int test(int a, int b, int c, int d)
{

return a+(b+(c+d));
}

results in the byte codes:

iload_0
iload_1
iload_2
iload_3
iadd
iadd
iadd
ireturn

If this was called astest(5, 6, 7, 8) , this would result in the stack usage show
in table 2. For the initial three loads, the registers are used to hold the stack contents di

and nothing is written to memory. However the fourth load would overflow the stack, soCreg
is written into memory, prior to the load. The first two additions can be performed enti
using the stack, and so it is not until just before the third addition that the value has
loaded back from memory.

A secondary, but similar problem, is that some Java instructions will translate
multiple ST20 instructions, which will require additional registers for temporary storage
this case registers may have to be written back to memory when it does not appear nec
Both of these problems are controlled by monitoring register usage during the compil
process, as described in section 4.4.

4.4 Compilation process

The objective of the compilation process is to reduce every byte code to a canned seq
of instructions, which require a minimal amount of additional ‘glue’ instructions to comb
them. These additional instructions are required to compensate for the ST20’s registe

Table 2: Register and Stack usage example

WS /
Regs

After initial
3 iload ’s

Before
iload_3

After
iload_3

After first
iadd

After second
iadd

Before third
iadd

After third
iadd

3 stack[2]: 5 stack[3]: 5 stack[2]: 5 stack[1]: 5 stack[1]: 5
2
1
0

C stack[2]: 5 stack[2]: 5 stack[2]: 6
B stack[1]: 6 stack[1]: 6 stack[1]: 7 stack[1]: 6 stack[1]: 5
A stack[0]: 7 stack[0]: 7 stack[0]: 8 stack[0]: 15 stack[0]: 21 stack[0]: 21 stack[0]: 2

piled

ok

bove

be in

et of
hich
ould

s.
ew
s been
being smaller then the VM stack, or registers getting corrupted while executing com
instructions.

The compiler will be driven by the byte code input stream. This will perform table lo
up, using the byte code as a key, and determine four pieces of information:

1 Which Java stack entries need to be in each register before the call or if the
register will be preserved across the call.

2 What will be in each of the registers after the call. This can be either a Java
stack entry (which may or may not have been modified), the unmodified
contents of a register prior to the call, or an undefined value.

3 The effect on the Java stack (a push or pop, and by how much).

4 The ST20 instructions to implement the byte code.

This table is generated by running a script over a text file which contains the a
information. For example, the Java byte codeiadd is described by:

iadd /* integer add */
PRE: Areg=stack[0] Breg=stack[1] Creg=any
POST: Areg=stack[0]* Breg=Creg Creg=undefined
STACK: -1

add

This specifies that before the instruction, the top two elements of the stack must
Areg andBreg, and after the instruction,Areg will hold the top element of the stack, which
has been modified (hence the “* ”), Breg will hold what was inCreg before the call, andCreg
is now undefined. Only one ST20 instruction is required,add .

The glue instructions are generated in a similar way. What is required is a s
instructions which transform the current state of the registers (which includes not only w
Java stack location it currently holds, if any, but also if the value has been modified, or c
still be obtained from memory) into the required state before the byte code instruction

A trivial solution to this is to write all modified registers to memory, and load the n
registers. However this would generate too much code, and so a two step process ha
devised:

1 Generate code to save any registers to memory which need saving.

Registers only need saving when they will be pushed out by the loading of
other arguments or because they will be corrupted by the instructions used to
implement the byte code. Any registers which hold useful values and which
will not be corrupted should remain in case they will be useful in subsequent
instructions.

Thus, having determined how many registers need to be saved, the compiler
first of all discards any registers whose contents are unmodified (and so can be
simply reloaded from memory), and if more registers need to be saved,
generates the code needed to save them to memory.

2 Generate code which will convert from the current register contents to the
desired ones.

This can be a simple look up operation, because for each of the three registers,
there are five possible sources of data: data from one of the three registers, data
from memory, or don’t care. This gives a maximum of 125 possible code
sequences, although a very large number will be identical.

s to be

l be

sult

my
after
n has

byte
and the
tables
So for example, if the compiler was about to generate code for theiadd instruction described
above, and the current register contents were:

Areg=stack[0] Breg=stack[2]* Creg=stack[3]

then one register needs to be saved to allow the loading of stack[1].Creg would be chosen
because it can simply be discarded, not having been modified, and so no code need
generated. This changes the register contents to:

Areg=stack[0] Breg=stack[2]* Creg=undefined

and so the required function needs to perform:

Areg=Areg Breg=stack[1] Creg=Breg

which is simply:

ldl stack[1]
rev

4.5 Jumps

The ST20 jump instructions (both conditional and unconditional) are such that it wil
difficult to maintain any values in the ST20 registers over a jump. Forcj this is because it
leaves 0 inAreg, which is difficult to include in the instruction description table, andj is a
timeslice point, which if taken will corrupt the registers anyway.

This is in addition to the problem of reconciling the contents of registers which will re
from jumping to a location, or reaching it through executing the previous instruction.

Thus the target of a jump must be flagged (possibly by the insertion of a dum
instruction which is marked as ‘corrupts all registers’ but which requires no code) so that
the previous instruction all valid registers are flushed to memory, and the next instructio
to reload them from memory.

4.6 Instruction counts

Initial results indicate that very few ST20 instructions are required to implement Java
codes. The two tables described in section 4.4 have been generated for the ST20C2,
frequency with which instruction sequences of a particular length appear are shown in
3 and 4.

Table 3: Number of ST20 instructions required
to implement a Java byte code

Number of ST20
instructions

Frequency

0 3

1 64

2 37

3 9

4 7

5 2

7 1

8 3

9 6

10-13 11

Function call 55

Table 4: Number of ST20 instructions required
to convert the registers between byte codes

Number of ST20
instructions

Frequency

0 8

1 21

2 35

3 31

4 22

5 7

6 1

uired
r and

ated
ns,
alls to

sible
prior
ld be

hese
er, and

the
d using

ava.

vides
n and
to be
xt the
switch.

written
with

iting
Table 3 shows that for most byte codes (72%), at most two ST20 instructions are req
to implement the byte code. It is important to note that these figures also include all erro
array bound checking.

There are currently a number of byte codes which are not implemented in-line (indic
by the final “Function call” figure). These are predominantly floating point operatio
which, because the ST20 has no hardware floating point unit, are implemented as c
library routines.

Table 4 shows how many ST20 instructions are required for all of the 125 pos
transformations required to convert the stack from its contents following one byte code
to the next. Again the majority (51%) require at most two ST20 instructions, which shou
the most common sequences.

4.7 Security

The Java security mechanisms involve checks at both and load time and run time:

• When a Java class is loaded it is verified to ensure that the code is valid. This
includes checks that the class is not corrupted or invalid, that there are no stack
under or overflows, that methods are called with the correct arguments, that all
instructions operate on operands of the correct type and that there are no
invalid type conversions.

• At run time low level checks are performed by the interpreter which could not
be performed at load time, for example checks for array bound violations or
null object dereferences. In addition the run time library performs higher level
checks such as attempts to access files or network connections.

Translating Java byte codes into native instructions will not make any difference to t
checks. The translated code must perform the same run time checking as the interpret
will attempt to use explicit checking instructions where possible (see section 5.2).

However the possibility of introducing a new security vulnerability through a bug in
translator must be considered. By keeping the code generator as simple as possible, an
pre-computed code sequences which can be fully tested, this risk is greatly reduced.

5 Other features

There are a number of other features which make the ST20 an interesting target for J

5.1 Micro-code scheduler

The ST20 has a simple scheduler built into the processor’s instruction set. This pro
timeslicing of processes in hardware, together with simple interprocess communicatio
synchronisation primitives. In addition a trap mechanism allows scheduling events
selectively intercepted in software to allow the scheduler to be extended. In this conte
small register set is an advantage because very little state has to be saved on a context

Using the hardware scheduler as a basis, a light-weight operating system has been
with the Java execution environment in mind. This extends the hardware scheduler
multiple priorities, and provides the synchronisation primitives required by Java, explo
the hardware scheduler wherever possible.

error
many

ouple

they

rmine
andler
must
ption

ating
ible to
f the
Java
back

ality
es in
ions in
iciency

l x86
an the
va and
d be
ST20
ever
or a
do not
. This
roves
5.2 Exception handling

All the ST20 CPUs provide standard error checked arithmetic, and traps for dealing with
conditions. These can be used as the basis for the Java runtime exceptions, which in
cases will mean that no additional code has to be generated for error checking.

For those areas which require explicit error checking, the ST20C2 core provides a c
of special error checking instructions:

• ccnt1 was designed to check the length of messages, which must be greater
then zero, and less than the specified maximum length. By specifying that the
messages can be of any length, this acts as an effective check for zero, which
is the nul object reference.

• To provide checked array accesses, thecsub0 instruction will check that an
array index is less than the length of the array.

Both of these instructions will generate a trap when the condition fails, otherwise
leave the value being tested inAreg, so it can be used by the next instruction.

When a trap occurs the runtime system will receive the trap and needs to dete
which byte code the erroneous instruction corresponds to, and thus which exception h
should deal with it. This means that while compiling the Java byte codes, the compiler
also record the addresses of code. This simply involves updating the existing exce
handling table with the addresses of compiled instructions.

5.3 Debugging

Current Java debugging technology is fairly rudimentary. It is hoped that while gener
the addresses of instructions for the exception handling mechanism, it will also be poss
generate symbolic debugging information. This will involve combining the addresses o
compiled code from the compiler with the debugging information already present in the
class file (the Java equivalent of an object file). This information could then be shipped
to the debugger, which would allow symbolic debugging of Java programs.

6 Conclusion

The similarity of the ST20 architecture to the Java Virtual Machine allows some function
to be implemented very efficiently. In many cases it is possible to keep stack valu
registers across multiple byte codes. However the need to generate additional instruct
the compiled code to reload the stack from memory means that in these cases some eff
is lost.

Most of the other work which has been done on Java JIT compilers target the Inte
family. Currently these report that the generated code is around three times larger th
byte codes and runs between 5 and 17 and times faster depending on the mix of Ja
native code [7]. Comparing the code generated for the ST20 with that which woul
required on a conventional register based machine, such as the x86, it is likely that the
will pay a penalty due to the small number of values which can be kept in registers. How
generated code is likely to be smaller for the ST20 compared to that required f
conventional processor, because so many instructions operate on the stack and so
require arguments, which is exactly how Java programs obtain their compact encoding
is especially important for embedded systems with limited memory spaces, and also imp
performance because less code has to be fetched from memory.

a low
obile
ility to

ms

995

6 (72-
The ST20 family has been designed for use in embedded systems, and provides
cost solution for many markets, including set top boxes, network terminals and m
phones. It is in exactly these areas that the use of Java is being examined, and the ab
run it efficiently on the ST20 makes an ideal partnership.

References

[1] The Java Language Environment White Paper, James Gosling and Henry McGilton, Sun Microsyste

Computer Corporation, October 1995 (ftp://ftp.javasoft.com/docs/whitepaper.*)

[2] The Java Language Specification 1.0 Beta, Sun Microsystems Computer Corporation, 30 October 1

(ftp://ftp.javasoft.com/docs/javaspec.*)

[3] The Java Virtual Machine Specification, Release 1.0 Beta DRAFT, Sun Microsystems Computer

Corporation, 21 August 1995 (ftp://www.javasoft.com/docs/vmspec.*)

[4] HotJava: The Security Story (ftp://www.javasoft.com/docs/security.ps.Z)

[5] ST20-TP2 Datasheet, SGS-THOMSON Microelectronics, January 1996 (42 1674 01)

[6] ST20C2/C4 Core Instruction Set Reference Manual, SGS-THOMSON Microelectronics, January 199

TRN-273-01)

[7] Interview with Régis Crelier, Borland International, Inc., 10 April 1996 (http://www.borland.com/

internet/java/interviews/regis2.html)

	1 Introduction
	2 Java
	2.1 Java and the World Wide Web
	2.2 The Java Virtual Machine

	3 ST20
	4 Compiling Java Byte Codes
	4.1 Development
	4.2 Memory layout
	Figure 1 Interpreter stack and variable layout

	stack_base = stack_size - stack_depth
	stack_offset(item) = (stack_size - stack_depth) + item
	variable_offset(item) = stack_size + item
	Table 1: Stack usage example
	4.3 Registers
	Table 2: Register and Stack usage example

	4.4 Compilation process
	1 Which Java stack entries need to be in each register before the call or if the register will be...
	2 What will be in each of the registers after the call. This can be either a Java stack entry (wh...
	3 The effect on the Java stack (a push or pop, and by how much).
	4 The ST20 instructions to implement the byte code.
	1 Generate code to save any registers to memory which need saving.
	2 Generate code which will convert from the current register contents to the desired ones.

	4.5 Jumps
	4.6 Instruction counts
	Table 3: Number of ST20 instructions required to implement a Java byte code
	Table 4: Number of ST20 instructions required to convert the registers between byte codes

	4.7 Security
	5 Other features
	5.1 Micro-code scheduler
	5.2 Exception handling
	5.3 Debugging

	6 Conclusion
	References
	[1] The Java Language Environment White Paper, James Gosling and Henry McGilton, Sun Microsystems...
	[2] The Java Language Specification 1.0 Beta, Sun Microsystems Computer Corporation, 30 October 1...
	[3] The Java Virtual Machine Specification, Release 1.0 Beta DRAFT, Sun Microsystems Computer Cor...
	[4] HotJava: The Security Story (ftp://www.javasoft.com/docs/security.ps.Z)
	[5] ST20-TP2 Datasheet, SGS-THOMSON Microelectronics, January 1996 (42 1674 01)
	[6] ST20C2/C4 Core Instruction Set Reference Manual, SGS-THOMSON Microelectronics, January 1996 (...
	[7] Interview with Régis Crelier, Borland International, Inc., 10 April 1996 (http://www.borland....

